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Abstract 

Marine rift basin-fills record the interplay between sediment supply and 

accommodation, which controls the organization and evolution of depositional 

environments in time and space. This study documents the tectono-stratigraphic 

architecture of multiple exhumed Early Jurassic marine rift depocentres of the 

southwestern Neuquén Basin, Argentina. Petrographic analyses of sandstone 

and new U-Pb ages are used to revise the current chronostratigraphic framework 

framework and to reassess sediment sources. This provides new insights in the 

timing of depocentre linkages, contrasting syn- to post-rift transition signatures, 

and diachroneity of early post-rift lobes in adjacent rift basins. The development 

of intraslope lobes in the Los Molles Fm. is documented from the late Early 

Toarcian, while the true basin-floor of the Neuquén Basin remained sand-starved 

during the Early Jurassic. 

At basin margin-scale, the late syn-rift is characterized by transverse systems, 

with mixed contribution of intrabasinal siliciclastic intrarift or volcanic arc-derived 

sediment supply and extrabasinal cratonic sediment supply from the 

southeastern basin margin. The early post-rift is characterized by the 

development of extrabasinal volcanic arc-derived intraslope fans, with axial 

sediment routeing across a low- to moderate-gradient ramp-type system flanking 

the volcanic island arc basin margin. At a regional-scale, inherited topography 

results in initial trapping of sands in depocentres proximal to the source, until 

healing of intrabasinal relief enables overspill, bypass and progradation of 

intraslope fans into more distal sand-starved depocentres. At the scale of 

individual depocentres, this study demonstrates the interactions of sediment 

gravity flows with subtle inherited rift and compaction-enhanced topography, and 

their impact on the characteristics of early post-rift lobes. 

This study extends established tectono-stratigraphic models of marine rift basin-

fills during the syn- to post-rift transition to backarc settings, and provides new 

outcrop-based models for different types of low aspect ratio early post-rift lobes. 
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Chacaico Basin, Naipauer et al., 2018), as well as new U-Pb zircon data provided in this contribution (red 
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Chapter 1 Introduction 

 

1.2. Background 

 

This thesis entitled “Sedimentology and tectono-stratigraphic development 

of the syn- to post-rift transition in Southern Neuquén Basin (Argentina) and 

controls on early post-rift submarine lobes of the Los Molles Formation” has been 

submitted to the School of Earth and Environment at the University of Leeds in 

agreement with the requirements for the degree of Doctor of Philosophy (Ph.D.). 

The results of the present thesis were obtained in the frame of a Joint Industry 

project, Lobe 2 funded by a consortium of 16 companies (Equinor, Maersk Oil, 

Woodside, Total, Neptune Energy, Petrobras, Shell, Anadarko, BP, Chevron, 

Bayern Gas, VNG Norge, BHP Billiton, DONG Energy, Marathon Oil, and Premier 

Oil). This thesis extends investigations and insights developed during the earlier 

Lobe 1 and 2 joint industry programmes conducted in the Karoo Basin, South 

Africa, to the Neuquén Basin, Argentina, in the frame of an international 

collaboration between the University of Leeds, Imperial College London, and the 

Geological Survey Center (CIG) of the University of La Plata (UNLP-CONICET), 

Argentina. The objectives are to document the syn- to post-rift evolution of marine 

sedimentation in multiple rift depocentres, and analyse early post-rift lobes 

hosted in the Los Molles Fm. This research is driven by growing need for 

stratigraphic detail on shallow- to deep-water sedimentary systems evolution 

during the syn- to post-rift transition and associated post-rift prospectivity 

intimately related to the development of sandy lobes across complex intrabasinal 

topography, for which reservoir potential is difficult to assess due to multiple 

sources for sands and scattered distribution. Previously, these research topics 

have been poorly addressed at outcrop given the paucity of exhumed examples 

of marine rift basins that permit both regional-scale and fine-scale stratigraphic 

resolution, which is available in the Neuquén Basin. Another advantage to work 

in the Neuquén Basin is the potential to produce predictive models for deep-water 

reservoirs in a tectonically more complex setting, and with a coarser grain-size 

range, than base-of-slope and basin-floor fans of the Karoo Basin systems 

characterized by a maximum upper fine sand grain-size.  

The Neuquén Basin is an ideal candidate to gain insights from both 

outcrop and subsurface given the excellent exposure of exhumed rift 
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depocentres, which have been uplifted in the eastern foothills of the Andes that 

form the western part of the Neuquén Basin. The outcrop work can be supported 

by the availability of subsurface datasets that image analogue quasi-

contemporaneous rift depocentres in the eastern part of the Neuquén Basin. In 

addition, the study of Jurassic rift depocentres developed during greenhouse 

times permits better insights into tectonically induced accommodation given that 

rates of sea-level change had a lower rate (1 m/kyr) than more recent rift systems 

with high frequency glacio-eustatic rates of sea-level change (10 m/kyr) (cf. 

Leeder, 1995; Ravnås and Steel, 1998). Furthermore, the evolution of the 

Neuquén Basin in a volcanic back-arc setting with growth of the Early Andean 

magmatic arc contemporaneous with the syn- to post-rift transition means ash fall 

and tuff beds permit high temporal resolution dating of the Early Jurassic 

stratigraphy. Therefore, chronostratigraphy is constrained with relatively high 

temporal resolution (<1 Myr timescale) using new geochronology (U-Pb SHRIMP 

volcanic zircon dating) and ammonite and bivalve biostratigraphy. Exceptionally 

well-exposed outcrops of exhumed syn- and post-rift depocentres in the Catán-

Lil department (39°S 70°W) located to the SW of the city of Zapala, in the 

southwestern part of the Neuquén Basin, were chosen to investigate multiple 

spatial and temporal scales of controls on the syn- to post-rift transition record 

and characteristics of associated early post-rift lobes of the Los Molles Fm. Our 

dataset includes seismic-scale correlation panels both of along-strike and 

downdip systems (>10 km long, 100 to 500 m thick), and results of detailed 

mapping to resolve the large-scale architecture and stacking patterns for various 

depositional systems making up the Early Jurassic stratigraphy. U-Pb 

geochronology on volcanic zircons of sampled tuff layers in the Los Molles Fm. 

permit refinement of the chronostratigraphy and establishment of spatio-temporal 

relationships between the investigated depocentres, integrated with microscopic 

scale analyses of thin sections of sampled sandstone to test source provenance. 

From an applied perspective, the Neuquén Basin is one of the main oil and 

gas producing basins of Argentina and offers a range of hydrocarbon plays, which 

are concentrated within the Vaca Muerta and Los Molles Formations representing 

the two main source rocks of the basin. Stratigraphic or combined structural traps 

have been widely investigated in the southern part of the basin, associated with 

the Huincul High, a major ENE-WSW trending structure 250 km long and 120 to 

60 km wide, which hosts a series of inverted rift depocentres attractive for 
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hydrocarbon exploration and exploitation. The Huincul High lies in the subsurface 

to the southeast and is exhumed to the southwest of the Neuquén Basin, which 

is the focus of the present field-based study. The very fine-grained successions 

of the Los Molles Fm. are known for their source rock potential (subsurface 2-11 

% TOC, kerogen type II-III) and shale gas plays (Cruz et al., 2002; Gómez Omil 

et al., 2002; Veiga et al., 2002; Stinco and Mosquera, 2005; Villar et al., 2005; 

Pángaro et al., 2006; Ostera et al., 2016). Subseismic scale sandbodies 

recognized at outcrop within the Lower Los Molles Fm. were deposited in early 

post-rift setting with variable confinement and record the effects of interactions 

between sediment gravity flows with a range of intrabasinal relief. The resultant 

different lobe complex termination styles and intralobe facies distribution with 

development of bed-scale heterogeneity have implications for the types of traps 

and reservoir quality. Despite their development in a context suitable to 

hydrocarbon generation, short migration pathways and trapping, targeting such 

types of reservoirs remains challenging mostly due to the difficulty for seismic 

imaging beneath thick shales, lack of or very low acoustic impedance contrast 

and uncertainty of reservoir quality and geometry due to low vertical seismic 

resolution and sparse wells. Outcomes of the present study will help to improve 

strategies for the definition and assessment of stratigraphic and combined 

structural traps, and reduce uncertainties related to exploration and development 

of deeply buried analogue early post-rift plays in underexplored basins (Dampier 

Subbasin, NW shelf of Australia, Karner and Driscoll, 1999; North Viking Graben, 

Norwegian North Sea, Zachariah et al., 2009; Halten Terrace, Norwegian Sea, 

Moscardelli et al., 2013; Taranaki Basin, New Zealand, Strogen et al., 2014; 

Danish Central Graben, North Sea, Nielsen et al., 2015; Pelotas Basin, offshore 

Uruguay, Conti et al., 2017; Hammerfest Basin, Barents Sea, Sattar et al., 2017; 

North Falkland Basin, Dodd et al., 2019). 
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1.2. Thesis rationale and relevance to current research 

 

Active deep-water rift basins are present around the world, and include the 

Gulf of Aden Rift, Red Sea Rift, Gulf of California Rift, Gulf of Corinth Rift, Terceira 

Rift, African Great Lakes of the East, West and Central Africa Rift. Their 

stratigraphic record enables semi-quantitative source-to-sink relationships to be 

established, and decoupling of tectonic, global sea-level change and short-term 

allogenic signals (climate, volcanism, oceanic circulation patterns). The syn- to 

post-rift transition is a critical stage of basin evolution, which is recognized in 

ancient rift basin-fills as a hiatal or angular unconformity, with strata onlapping 

onto fault-block highs that are laterally equivalent to a disconformable or a 

conformable transitional sequence in the deepest part of the basins, due to the 

diachroneity and polyphased nature of this event (Suez Rift, Bosence, 1998; NW 

Australian margin, Karner and Driscoll, 1999; Northern North Sea, Kyrkjebø et 

al., 2004; West Iberia-Newfoundland margins, Soares et al., 2012; Taranaki 

Basin, New Zealand, Strogen et al., 2014; North Falkland Basin, Lohr and 

Underhill, 2015; Pannonian Basin, Balázs et al., 2016; Fairway Basin, Northern 

Zealandia, Rouillard et al., 2017). Seismic reflection data has excellent lateral 

resolution, which permits the analysis of key regional stratigraphic markers. 

However, outcrop-based studies of ancient rift basins have highlighted the 

subseismic variability and complexity of the tectono-stratigraphic signature 

associated with the syn- to post-rift transition, both at depocentre-scale, and less 

commonly across multiple depocentres (Bahia Concepcion, Baja California, 

Ledesma-Vásquez and Hohnson, 2001; Niigata-Shin’etsu Basin, Central Japan, 

Takano, 2002; Lusitanian Basin, West Iberia, Alves et al., 2003; Pucara Basin, 

Central Peru, Rosas et al., 2007; Wollaston Forland, East Greenland, Surlyk et 

al., 2013; Taiwan, Yu et al., 2013; Sverdrup Basin, Canadian Arctic, Hadlari et 

al., 2016). Outcrop analogues are key to resolving the subseismic scale changes 

of stratigraphic architecture across the syn- to post-rift transition. Tycially, 

however, these studies lack detailed documentation of stacking patterns, 

depositional geometry and connectivity of sandbodies, facies distribution, and 

characterization of sedimentary processes, which make up shallow- and deep-

water sedimentary systems. 

The rapid temporal and spatial changes of accommodation, and external or 

internal sediment supply, are closely related to the variability of depositional 
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systems across rift depocentres and depocentre migration. In addition, patterns 

of depocentre linkage provide insights into basin configuration and controls 

during the final rifting. Models for rift basin evolution provide a basis for the 

analysis of syn-rift basin stratigraphy based on genetically- and temporally-linked 

depositional systems or parasequences (Gawthorpe et al., 1994; Howell and 

Flint, 1996; Dorsey and Umhoefer, 2000; Martins-Neto and Catuneanu, 2010), 

nomenclature for rift evolution based on basin-fill patterns (underfilled, filled or 

balanced and overfilled) (Prosser, 1993; Caroll and Bohacs, 1999; Ravnås and 

Steel, 1998), and fault evolution patterns (Gawthorpe and Leeder, 2000). 

However, controls such as inherited rift physiography, accommodation patterns, 

change in sediment source (intrabasinal versus extrabasinal), and strain 

evolution during the syn- to post-rift transition are poorly emphasised aspects of 

current conceptual rift basin models.  

Typically, the margins of young rift basins are characterized by steep and/or 

topographically complex slopes outboard of narrow structural shelves with a fixed 

shelf edge position (sensu Helland-Hansen et al., 2012). This means that 

sediment dispersal patterns are complicated and evolve through time to make 

prediction of genetically connected and spatially disconnected sandstone-rich 

depocentres challenging. This basin configuration can promote sediment bypass 

across sediment-starved out-of-grade slopes and/or trapping across above-grade 

slopes with ponded or healed accommodation (sensu Prather et al., 2003), with 

significant implications for sediment storage or transfer downslope (Leeder et al., 

2002; Ford et al., 2007; Strachan et al., 2013; Weiß et al., 2016). Such transient 

sediment storage across complex slope and basin-floor morphology affects 

sediment transfer to the deeper basin, which impacts the propagation of terrestrial 

climatic forcing signals to deep-water sedimentation with time lags up to Myrs in 

the sedimentary record (e.g Castelltort et al., 2004; Allen, 2008; Ducassou et al., 

2009; Covault and Graham, 2010). The effects of seabed topography on 

sediment partitioning (sensu Prather et al., 2012) and evolution of fan architecture 

and stacking patterns in response to filling of slope accommodation have been 

observed in a range of physiographically complex settings (ponded, healed or 

stepped slopes, tortuous corridors, intrabasinal counterslope or lateral oblique 

slope) (Satur et al., 2000; Sinclair and Tomasso, 2002; Hooper et al., 2002; Booth 

et al., 2003; Prather et al., 2003; Hodgson and Haughton, 2004; Adeogba et al., 

2005; Pyles et al., 2008; Romans et al., 2009; Cross et al., 2009; Kane et al., 
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2010; Hay, 2012; Marini et al., 2015; Spychala et al., 2015; Jobe et al., 2017; 

Pinter et al., 2017; Bell et al., 2018).  

Similar insights on the distribution and morphology of early post-rift sand 

fairways and sand-rich fans accumulated across inherited rift structures have 

been gained from subsurface systems (Argent et al., 2000; Modica and Brush, 

2004; Martinsen et al., 2005; Fjellanger et al., 2005; Gjelbeg et al., 2005; Fugelli 

and Olsen, 2007; Jackson et al., 2008; Lohr and Underhill, 2015). Few subsurface 

studies document the architecture, facies distribution and bed-scale 

heterogeneity in early post-rift systems (Haughton et al., 2003; Southern et al., 

2017; Dodd et al., 2019). This is despite the range of potential plays in 

underexplored post-rift successions and the associated risk for reduced reservoir 

properties (Lien et al., 2006; Amy et al., 2009; Porten et al., 2016). Subsurface 

datasets remain limited by their poor spatial and temporal resolution, with sparse 

wells, and a seismic-scale resolution with low impedance contrast posing 

problems for imaging isolated “thin” sandstone successions (<30 m). This are 

commonly overlooked in organic-rich fine-grained early post-rift successions, 

mostly regarded for their source rock and seal potential (Garret et al., 2000; 

Moscardelli et al., 2013).  

Likewise, the confined offshore (>100 m depth) physiography of modern rift 

basins (e.g. Gulf of Aden Rift, Red Sea Rift, Gulf of California Rift, Gulf of Corinth 

Rift, Terceira Rift) and associated sandy systems remains poorly documented. 

However, modern systems permit direct high-resolution observation of variations 

in slope morphology and the resultant influence on sedimentary processes. 

Sediment gravity flow behaviour, sediment partitioning (bypass, erosion and/or 

deposition), and flow transformation across complex submarine slopes with 

structural or depositional reliefs have been poorly demonstrated in rift basin-fills. 

Few studies have reported changes in the distribution, thickness and nature of 

sediment gravity flow deposits across fault-related topography from exhumed 

systems (Ferentinos et al., 1988; Hodgson and Haughton, 2004; Pochat et al., 

2007; Kane et al., 2010; Weiß et al., 2016; Henstra et al., 2016) or experimental 

modelling (Alexander and Morris, 1994; Gee et al., 2002; Ge et al., 2017). 

Difficulties for flow monitoring in such seismically active environments have 

limited our understanding of source-to-sink and deep-water sedimentation 

dynamics in rift basins and have contributed to making early post-rift fans one of 

the least explored types of deep-water clastic systems. 
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Rift basin topography can induce abrupt changes in confinement and 

gradient, which leads to flow transformation and waning-waxing behaviour. This 

complicates the location of erosion, bypass and depositional processes through 

time. The resultant distribution of sand-rich versus mud-rich deposits across 

topography, and the development of bed-scale heterogeneity in potential sand-

rich accumulations, can form flow baffles within reservoirs (Amy et al., 2009) and 

reduce the porosity and permeability of reservoirs (Porten et al., 2016). This issue 

is important for petroleum prospectivity and characterization of reservoirs 

involved in stratigraphic and combined structural traps (hangingwall closures, 

compactional drapes, four way dip closure over buried topography) and 

assessment for the risks of leakage and post-depositional remobilization (Argent 

et al., 2000; Modica and Brush, 2004; Martinsen et al., 2005; Milton-Worssel et 

al., 2006; Jackson et al., 2008; López-Gamundí and Barragan, 2012). Therefore, 

improved understanding of sediment gravity flow interactions with complex 

seabed topography in rift basins could reduce uncertainty in predictions of 

reservoir and seal distributions, and reservoir quality distributions at the pinchout 

of sand-rich fans. 

The stratigraphic archives of rift basin-fills provide the opportunity to 

constrain responses to the interplay of intrabasinal or extrabasinal controls, which 

can help to inform past palaeoenvironmental changes, and better forecast natural 

hazard prediction and related anthropogenic risks (Gulf of Corinth, Collier et al., 

2000; Leeder et al., 2002; Red Sea and Gulf of Aden, Garzanti et al., 2001; Inner 

Moray Firth North Sea, McArthur et al., 2013; Southern Mexico, Martini and 

Ortega-Gutiérrez, 2016; East African rift, Schneider et al., 2016). Understanding 

mechanisms of rifting and sedimentation patterns in different source-to-sink 

configurations enable improved palaeogeographic reconstructions and provide 

insights into palaeoclimate, palaeooceanography, and palaeoenvironmental 

evolution. Such observations in ancient rift basins can help to explain the 

distribution of fauna and flora, speciation and diversification processes at a 

continental scale, as shown with the syn- to post-rift evolution of Zealandia in a 

back-arc setting (Pelletier, 2006; Rouillard et al., 2017). In the case of the Gulf of 

California, understanding the interactions between rift basin physiography and 

oceanic circulation, with seasonal upwelling variations causing fluctuations of 

nutrients, helps correlation of trophic level fluctuations and distribution of 

carbonate production along the rift, which has ecological implications for the 
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management of these sensitive biotopes (Halfar et al., 2004). Fine-scale 

observation of modern rift basin-fills, such as the Gulf of Corinth, have also helped 

to forecast short-term (10s to 100s kyrs) climate changes over the last ice ages, 

and the effects on onshore to offshore sediment transfer rate (Collier et al., 2000). 

This can be key for geohazard assessment as the physiography promotes mass 

movement, and flow transformation from slumps to debris-flows or turbidity 

currents, and considerable risk for cable breakage and landslide-generated 

tsunamis in areas of high coastal population density (Gulf of Corinth, 

Papatheodorou and Ferentinos, 1997; Lykousis et al., 2007). Other natural 

hazards characteristic of rift basins (e.g. Brune, 2016) along with earthquakes, 

includes volcanic eruptions with catastrophic degassing events and release of 

high-concentration of dissolved carbon dioxide and methane gas (Great Lakes of 

the East African Rift, Schmid et al., 2003), lava flows (Mount Nyiragongo, East 

African Rift, Favalli et al., 2009; Nabro volcano, Afar Rift, Hamlyn et al., 2014), 

ash or pumice falls, debris avalanches/mudflows, hydrothermal explosions and 

acid rains. These types of volcanic hazards involve days to decades timescales, 

long environmental recovery and cause a number of fatalities and migration of 

entire populations. 

 

1.3 Objectives and research questions 

 

The present study addresses a multiscale outcrop-based analysis of the 

evolution of sedimentation with changes in sediment supply and accommodation 

induced by the interplay of tectonism, eustasy and thermal subsidence in multiple 

marine rift depocentres (cf. Chapters 4-5-6). This contribution aims to refine and 

extend established models of sedimentation in marine rift basin-fills and factors 

of control during the syn- to post-rift transition, and to provide outcrop-based 

models for early post-rift lobes. The concepts and data can be used to improve 

prediction of reservoir potential in underexplored marine rift basin-fills that remain 

high-risk prospects for the hydrocarbon industry. The following research 

questions are addressed in the discussion (cf. Chapter 7). 

 

Temporal and spatial variability of sedimentation, evolution of depositional 

systems, stacking and basin-fill patterns across single depocentres or at a 
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regional-scale, and the factors of control intervening during the syn- to post-rift 

transition are not resolved by current conceptual models for rift basin evolution 

 What factors controlled the temporal and spatial variability of the 

syn- to post-rift transition sedimentation? 

 What are the characteristics of the syn- to post-rift transition 

signature? 

 

Studies of intraslope basins have demonstrated the importance of slope 

morphology on submarine fan development however the effects of inherited rift 

topography on siliciclastic systems have been poorly explored. The early post-rift 

setting remains a poorly investigated basin configuration for the factors of control 

onto the development of lobes and their characteristics in general, which needs 

to be better defined. 

 What were the timing and source for early post-rift sand supply, and 

their implications for palaeogeographic evolution of the Southern 

Neuquén Basin margin? 

 What are the characteristics of early post-rift intraslope fan deposits 

of the Early Jurassic Los Molles Formation and how do they compare 

to other deep-marine sandy systems? 
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1.3 Methodology 

 

1.3.1 Outcrop data 

 

The study area is located in the eastern foothills of the Andes, in the Catán-

Lil department (39°S 70°W) located to the SW of the city of Zapala, in the 

southwestern Neuquén Basin, Argentina. Mezozoic sedimentary sequences, and 

specifically the Late Triassic to Early Jurassic deposits, were uplifted along 

basement-involved faults of the main exhumed rift basins. This configuration 

provides outcrops enabling two- and locally three-dimensional control for tracing 

structures and strike and dip sections of syn- and post-rift deposits. Mean bedding 

orientations were calculated for each unit from all measurements taken 

(Appendix 1 and 2) to constrain an average tectonic dip and dip direction to help 

identify dip discordances and subtle unconformities. 

Stratigraphic vertical sections, measured at 1:25 scale with regular HCl 

test for change in the rocks carbonate content, document grain-size, sedimentary 

structures and palaeocurrents, types of bed contacts (amalgamated, erosional, 

sharp, loaded, deformed), body and trace fossils. A total of 399 palaeocurrent 

measurements collected from ripple, dune-scale cross-stratification and parting 

laminations, cross-stratification, flutes and grooves were plotted in rose diagrams 

to reconstruct the palaeoflow pathways with bedding restored using Stereonet 

software (Appendix 3). A total of 25 logged vertical sections with cumulative 

thickness of 5.9 km (Appendix 4) were used to identify facies and facies 

associations, and to interpret related sedimentary processes and depositional 

environments. Analysis of sedimentary facies, palaeocurrents, stratal geometries 

and thickness, onlap/truncation patterns and local deformation in relation to 

structures (faults and folds) were used to determine the influence of tectonism 

(locus and timing of fault/fold activity and reconstructed structure length) and 

inherited palaeotopography on sedimentation. Changes in facies associations, 

and deformation and evolution of sedimentary systems, permitted tectono-

sedimentary units bounded by stratigraphic surfaces to be recognized, which 

mark major sedimentary changes across depocentres.  

Marker beds and units chosen for log correlation mostly correspond to 

sandstone packages of the Los Molles, which permit physical correlation between 

logs as they could be walked out for several kilometres and constrained with 
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Unmanned Aerial Vehicle (UAV) photo panels. Detailed mapping and regular 

record of bedding strike dip information was conducted with Garmin GPS 

referencing, Digital Terrain Model (DTM) and UAV surveys and were integrated 

with previous structural and geological mapping studies (Leanza and Blasco, 

1990; Gulisano and Gutiérrez Pleimling, 1995; Cucchi et al., 2005; Franzese et 

al., 2006; García Morabito et al., 2011; Muravchik et al., 2014). The presented 

maps and cross sections are shown across the actual structural and topographic 

configuration, given that structural restoration and backstripping would need 

more constraints on isopach distribution, burial depth, crustal parameters and 

palaeogeographic changes including bathymetry beyond the scope of the present 

study. 

The palaeogeographic evolution of rift basins is based on spatial variations 

of facies associations (Table 4.1 and 5.3) and thickness, deformation and 

onlap/truncation patterns. These observations and data enable the description of 

the evolution of depositional systems across rift structures, and the definition of 

four tectono-sedimentary units (Unit 1, 2, 3 and 4) and three main sequences 

(J1.1, J1.2 and J2.1) bounded by stratigraphic surfaces which mark major 

sedimentary changes across depocentres. Spatio-temporal relationships 

between the four tectono-sedimentary units of the Early Jurassic Lower Cuyo 

Group were based on pre-existing geochronologic and biostratigraphic markers 

(Nannofossil chronozones, Ballent et al., 2011; Standard European (EAB) and 

Andean (AAB) Ammonite biozone numbers, Riccardi, 2008; Early Jurassic 

ammonite, bivalve and brachiopod biozones, Volkheimer, 1973; Gulisano and 

Gutiérrez Pleimling, 1995; Quattrocchio et al., 2007; TOAE in the late 

Tenuicostatum-early Dactylioceras Hoelderi, Al-Suwaidi et al. 2016 and TOAE in 

biozones 14-15, Angelozzi and Pérez Panera. 2016; U-Pb LA-ICPMS zircon age 

186.3 ± 0.4 Myr at base of the Chachil Fm. in the Chachil Graben, Armella et al., 

2016 modified from Leanza et al., 2013; U-Pb LA-ICPMS zircon age 182.4 ± 2.3 

Myr in the Los Molles Fm. in the Chacaico Basin. Naipauer et al., 2018) and 

integrated with new U-Pb ages in the Lower Los Molles Fm. obtained in this study. 

This refined temporal and stratigraphic framework permitted estimation of 

sedimentation rates (Table 5.1). 

 

1.3.2 Geochronological data 
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Two tuff samples were collected in the Lower Los Molles Fm. (i) Tuff 1 at 

the top of Unit 3 in the Catán-Lil basin (39° 15.427'S 70° 34.959'W) and (ii) Tuff 

3 at the base of Unit 3 in the Chachil basin (39° 10.554'S 70° 31.447'W) (cf. 

Chapter 5). Tuff samples of 2 kg each were crushed and grinded to recover 

zircons at the CIG (Centro de Investigaciones Geológicas) and Museum of La 

Plata-UNLP. The first step for zircon separation is to use a 140 microns mesh for 

sieving, washing, and concentration of heavy minerals in the bottom and grooves 

of the tray, while the light minerals were discarded by its edge. The heavy mineral 

preconcentrate was washed with ethyl alcohol, recovered by filter paper, and 

oven-dried. Manual handpicking of 50 zircon grains was carried out under a 

binocular magnifying glass and stored inside an eppendorf tube to be sent for U-

Pb geochronology at Research School of Earth Sciences (RSES) of the 

Australian National University (ANU). U-Pb dating was carried out using sensitive 

high-resolution ion microprobe (SHRIMP-II) following analytical procedures of 

Williams (1998) and Ireland and Williams (2003). Hand-picked grains (31 grains 

for Tuff1 and 29 grains for Tuff2) were mounted with standard zircon (Temora-2) 

in an epoxy disc, ground and polished to expose grain surface for laser ablation. 

Cathodoluminescence imaging was conducted using SEM-EDS (Scanning 

Electron Microscope with Energy Dispersive Spectroscopy) to characterize 

idiomorphic zircon crystals (internal texture with oscillatory zoning indicative of 

igneous origin) inherent to their volcanic provenance, to ensure the absence of 

inherited cores and define laser ablation spots within well-zoned rims of euhedral 

grains.  

Analytical data were processed using SQUID (Ludwig, 2001a) and 

ISOPLOT/EX (Ludwig, 2001b), tabulated with isotopic data (Table 5.2). Uranium 

and thorium abundances have been calculated with reference to SL13 (238 ppm 

U) and the 206Pb/238U ratios have been normalized relative to a value of 0.0668 

for the 206Pb/238U ratio of the standard zircon Temora-2 of 417 Ma (Black et al. 

2004). 
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1.3.3 Thin section data 

 

A total of 28 hand samples were collected (Appendix 5 in the three distinct 

stratigraphic units (J1.1, J1.2 and J2.1) and 15 samples were chosen for 

extraction of petrographic thin sections (cf. Chapter 6) (Table 6.1 and 6.2). Thin 

sections were analysed at the Centre of Geological Investigations Laboratory 

(CIG) of the National University of La Plata, Argentina and at the University of 

Leeds, UK. Digital images were taken at high magnification (4x) in plane (PPL) 

and cross polarized (XPL) transmitted light using a digital-camera equipped 

microscope, and stitched with the Photoshop software into high-resolution PPL 

and XPL photomosaic slices. The JMicrovision V1.27 software Java™ (Roduit, 

2008) was used to proceed to semi-automatic digital point counting. Percentage 

abundance of component grains were defined with 600 modal point counts per 

thin section, stochastically distributed across an aleatory grid with a minimum 

interpoint distance larger than the maximum grain size fraction (Appendix 6-7-8). 
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1.4 Thesis outline 

 

This thesis comprises 8 chapters and includes one manuscript submitted 

for publication in international peer-reviewed journal. 

 

Chapter 2, “Scientific background”, synthetises several aspects of the 

current knowledge which are relevant to understand key questions and objectives 

of the conducted research. This includes models and nomenclature for the 

genesis and evolution of rift basins, sedimentation patterns during the syn- to 

post-rift transition, and the development of submarine fans in topographically 

complex settings. 

 

Chapter 3, “Introduction to the Neuquén Basin”, provides the geological 

setting with a focus on the syn-rift and post-rift evolution, structural and 

sedimentological framework of the study area, with detailed literature review of 

the Early Jurassic stratigraphy in the southern Neuquén Basin. 

 

Chapter 4 is based on a manuscript “Evolution from syn-rift carbonates to 

early post-rift deep-marine intraslope lobes: the role of rift basin physiography on 

sedimentation patterns” that is founded on a detailed case study conducted in the 

Chachil basin, which is in re-review at Sedimentology. This chapter provides a 

refined sedimentological analysis and addresses the evolution of, and controls 

on, the development of carbonate to siliciclastic systems during the syn- to post-

rift transition. It highlights the role of inherited rift topography on sedimentation 

patterns during the syn- to post-rift transition, differential compaction controlling 

post-rift sedimentation patterns, and documents argillaceous intraslope lobes 

trapped in complex topographic setting. The chapter provides an outcrop-based 

model for the depositional architecture, termination style, distribution and types 

of hybrid event beds present in early post-rift intraslope lobes. Results have 

significant implications for predicting the location of clastic injectites and bed-

scale heterogeneity within intraslope lobes departing from classic models. 

 

Chapter 5 forms the basis for a manuscript on a larger-scale analysis of the 

contrasting signature of the syn- to post-rift transition across multiple 

depocentres, based on a refined Early Jurassic chronostratigraphic framework 
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constrained with new geochronological ages obtained in the Los Molles 

Formation. The aim is to address the evolution and control on the variability of 

late syn-rift and early post-rift depositional systems, and implications for analog 

rift basins. The effects of pre-rift inheritance and volcanism on stratigraphic 

architecture of the syn- to post-rift transition, individual basin-fill patterns, 

changes in the mode of sediment supply (intrabasinal versus extrabasinal) and 

sediment dispersal (transverse versus axial) and successive depocentre 

migration, are assessed from local (Chacaico and Eastern Catán-Lil basins) to 

regional-scale (Eastern Catán-Lil, Chacaico, Chachil, Western Catán-Lil and La 

Jardinera basins). 

The chapter provides an outcrop-based seismic-scale analog to assess the 

stratigraphic architecture and facies variability of the syn- to post-rift transition. 

The outcomes raise implications for the prediction of spatial distribution and 

characteristics (dimensions, termination style, stacking patterns, facies) of early 

post-rift lobe complexes developed diachronously across basins with variable 

topographic confinement. 

 

Chapter 6 is based on a manuscript that focuses on the stratigraphic evolution 

of compositional and textural characteristics of Early Jurassic sandstones of the 

Chacaico and Los Molles Fm. The aim is to investigate changes in sediment 

source areas during the syn- to post-rift transition with implications for temporal 

and spatial changes in the quality of reservoir sandstones. Two early post-rift 

intraslope fans of the Los Molles Fm. are used to compare petrofacies in relation 

to characteristics of lobe complexes and related depositional processes. This 

chapter highlights stratigraphic change in reservoir quality of sandstone 

depending on source, and within intraslope fans depending on effects of 

topography, which can be used as analogues for early post-rift sandy systems 

developed across above-grade slopes inherited from rift basin physiography. 

 

Chapter 7 adresses the research questions and discusses results and 

implications in the frame of the initial objectives. 

 

Chapter 8 synthetises the main findings of the present study and potential 

perspectives for further investigations to be conducted in the study area. 
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Chapter 2 Scientific background 

 

2.1 Models and nomenclature for the genesis and evolution of rift basins 

 

Tectonically active rift basins, back-arc basins and passive margins form a 

group of genetically related extensional basins (Doglioni et al., 1998; Ziegler and 

Cloetingh, 2004; Cloetingh and Willett, 2013; Franke, 2013; Buck, 2015; Brune, 

2016). Continental extension arises in a range of tectonic settings characterized 

by normal and strike-slip faulting, lithospheric thinning, variable magmatism with 

high heat flow near magmatic centres and magmatic underplating (post-orogenic 

gravitational collapse, back-arc extension behind island arc, pull-apart extension-

transtension strike-slip) (Allen and Allen, 2013). 

 

2.1.1 Diversity of rift architecture 

 

The tectonic development of rifts (extension, uplift and subsidence) is 

mainly controlled by the lithospheric strength strongly dependent on its thermal 

structure (with a typical heat flow of 40-50 mW m-2), initial crustal rheology, 

thickness and pre-existing structures, mode of extension (i.e. orthogonal or 

oblique), volcanism, and the rate, magnitude and width over which extensional 

strain is distributed (narrow versus wide rifts) (McKenzie, 1978; Ruppel, 1995; 

Ziegler and Cloetingh, 2004; Buck, 1991, 2004; Cloetingh and Willett, 2013). Rift-

related magmatism, with lithospheric weakening and intrusive heating below the 

rift axis accommodate extension, playing a fundamental role in the breakup of 

strong thickened continental lithosphere and onto the evolution of rift, including 

changes in strain localization, volcano-tectonic subsidence, uplift and thermal 

subsidence patterns (Buck, 2004; Ziegler and Cloetingh, 2004). The development 

of large offset normal faults and significant rift topography, which is characteristic 

of brittle crustal thinning in non-magmatic rift settings, is hampered in magmatic 

rift settings by the lower differential stress required to accommodate extensional 

strain. In magmatic rift settings, strain is largely accommodated by intrusions, with 

little tectonic subsidence and preservation of crustal thickness, and volcanic 

heating and loading of the upper crust that tend to focus extension. This in turn 

increases eruption events of greater volumes of magmas, and can promote 
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anomalously large-magnitude thermal subsidence (Ethiopian Rift, Ebinger and 

Casey, 2001; Red Sea, Wolfenden et al., 2005; Great Rift Idaho, Holmes et al., 

2008; Tongariro Graben, New Zealand, Gómez-Vasconcelos et al., 2017). The 

obliquity of rifting seem to have an important control on the distribution of volcanic 

activity focused where pure shear at the curved tips of oblique faults locally 

increases rates of extrusion (Ethiopian Rift, Korme et al., 1997; TVZ, New 

Zealand, Acocella et al., 2003). 

 

Rift architecture depends of the degree of coupling between the brittle upper 

crust and ductile lower crust and mantle, which increases with the heat flow, 

producing a range of deformation styles between narrow (thin crust, low heat flow, 

brittle deformation), wide (intermediate crustal thickness and heat flow, ductile 

deformation) and core complex (thickened crust, high heat flow) modes of 

lithospheric stretching (Brun, 1999; Buck, 2015; Fig. 2.1.). 
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Figure 2.1: Scheme (Gartrell et al., 2001) showing the three end member modes of lithospheric 
extension depending on thermal state of the lithosphere and crustal thickness. Hot and weak 
lithosphere promotes ductile deformation with strong decoupling between brittle crustal and 

mantle. This can promote a metamorphic core complex mode in the case of thick and high heat 
flow conditions (A),or wide rift mode in the case of intermediate crustal thickness (B). Cooler 
and stronger, thin crust leads to preferential coupling between crust and mantle and brittle 

deformation results in narrow rifts. Plots show yield strength with depth for hypothetical 
geothermal gradients and crustal thickness (modified after Buck, 1991). 
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The metamorphic core complex mode of extension accommodates 

stretching with little subsidence and requires specific conditions to occur. This 

includes a marked decoupling between the crust and upper mantle and low 

sedimentation rates and/or low density sediments that promote low overburden 

pressures. These factors together with the presence of a basal shear zone at 

shallow depths in a relatively thin middle crust can lead to the development of 

low-angle detachments (Gartrell, 2001). In contrast, the strong crust-mantle 

coupling in the case of narrow rift and higher sedimentation and subsidence rates, 

enhanced by high overburden pressure, will prevent low-angle detachment and 

the basal shear zone to be sited at greater depth in a thicker middle crust involving 

high vertical loading, and the formation of steeply dipping master faults (Gartrell, 

2001).  

Narrow rifts (<100 km wide) form deep isolated basins with small amount of 

extension associated with cold and high strength lithosphere, accommodating 

extension with localized strain on a small number of high-angle faults 

accommodating large displacements (Gulf of Suez-Aden Rift, Bosence, 1998; 

New Zealand, Taupo Volcanic Zone, Acocella et al., 2003; Rhine graben, Hinsken 

et al., 2007; EAR and Main Ethiopian Rift, Ring, 2014). 

Wide rifts (>100s to 1000 km wide) form multiple basins with horst and 

grabens or tilted blocks. These systems are associated with weak and hot 

lithosphere, accommodating extension with distributed strain over a broad area. 

A large number of small offset high-angle faults result from strain delocalization 

related to lithospheric strength on temperature. High strain zones on rift border 

faults accommodate large displacement related to deeply rooted upper-middle 

crust detachments (BRP, Braun and Beaumont, 1989; Aegean Sea and Central 

Greece, Goldsworthy et al., 2002; North American Rift system, Withjack et al., 

2013; Zhejiang Province, eastern South China, Li et al., 2014). 
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2.1.2 Kinematic rift models 

 

Passive rifting is controlled by stretching and thinning of cold dense 

lithosphere driven by far-field plate boundary forces (McKenzie, 1978) and may 

occur with limited or without volcanism after the onset of extension, with upwelling 

of hot asthenosphere due to adiabatic decompressional melting in response to 

rifting (Sengor and Burke, 1978). In the case of active rifting, crustal uplift and 

thinning occurs with thermal upwelling of the hot asthenosphere with 

decompression and partial melting at the base of the lithosphere, and volcanism 

peaking prior to, and during, large-scale extensional collapse with ascending 

mantle-derived magmas driven by sublithospheric mantle dynamics (Sengor and 

Burke, 1978; White and McKenzie, 1988).  

Mechanical stretching models for passive rifting explain partitioning of 

extensional strain through the lithosphere and syn- rift and post-rift subsidence 

patterns, and include pure shear (McKenzie, 1978), depth dependent extension 

(Royden and Keen, 1980) and simple shear (Wernicke, 1985) models.  

The pure shear model (McKenzie, 1978) assumes the crust and lithosphere 

undergoes uniform lithospheric stretching, with symmetric rifting driven by faulting 

of the brittle upper crust. Elevation of the geotherm with ductile thinning of the 

lower crust and subsidence or uplift result from isostatic adjustments to rising 

asthenosphere depending upon the ratio of crustal to lithospheric thickness. In 

the simple shear or non-uniform stretching model (Wernicke, 1985) crustal 

extension is accommodated by a large-scale, low-angle detachment with variable 

crustal versus lithospheric thinning, and no significant thinning of the mantle 

lithosphere. It forms an asymmetrical rift basin offset from the locus of rising 

asthenosphere with fault-block rotation, and limited subsidence of the brittle crust 

and uplift of basin margins during stretching. The depth-dependent stretching 

model (Royden and Keen, 1980; Kusznir and Karner, 2007; Huisman and 

Beaumont, 2014) assumes greater stretching of the lower crust and mantle 

lithosphere than the upper crust producing different subsidence patterns during 

extension as the crust may act as a detachment horizon. This model explains 

limited brittle syn-rift deformation and greater thermal subsidence and uplift of 

basin margins during stretching than the uniform stretching model.  
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All the three mechanical stretching models involve syn-rift brittle fracture of 

the upper crust that is controlled by the ratio of crustal to total lithosphere 

thickness and the amount of extension in the crust and lithosphere. Subsequent 

post-rift subsidence is driven by isostatic adjustment to lithospheric thermal re-

equilibration and cooling of the thinned mantle lithosphere with thickening and 

increasing density. Uplift of rift basin margins with flexural rebound to 

accommodate extension rapidly ceases after rifting, with sediment loading and 

post-rift thermal re-equilibrium of the lithosphere (Roberts and Yielding, 1991; 

White and McKenzie, 1988; Japsen et al., 2012). Thermal subsidence and 

downwarping of the lithosphere is expected to produce a broad subsiding sag 

depocentre postdating extension-driven normal fault activity and overstepping of 

the rift zone. The thickness of post-rift sediment accumulated is a function of 

crustal density, water-depth and sediment load. The cumulative sediment 

thickness is nearly equal to the thickness of sediment accumulated during the 

syn-rift (McKenzie, 1978; Ziegler and Cloetingh, 2004). 

In the case of pure shear in the uniform stretching model, the syn- to post-

rift unconformity will normally affect the entire area of extended upper crust. The 

resulting basin architecture is a symmetric steer’s head form, where syn-rift and 

post-rift depocentres stack, with the post-rift thermal sag basin overstepping 

previous the rift depocentre and basin flanks (North Sea Rift, Roberts and 

Yielding, 1991). For areas undergoing simple shear in non-uniform stretching 

models or heterogeneous shear in depth-dependant stretching model, thermal 

uplift and subsequent syn- to post-rift unconformity development may be 

asymmetric to the rift structure. This is due to structurally linked rift basins 

subsiding diachronously with migration of extension, and limited geographic 

correspondence between the locus of extension and thermal subsidence. This 

produces a lateral offset between the axis of the syn- and post-rift depocentres in 

the case of simple shear model (Tucano and Sergipe–Alagoas Basin, NE Brazil, 

Karner et al., 1992), or in the case of depth-dependant model where anomalous 

post-rift subsidence is difficult to reconcile with the limited brittle deformation of 

the upper crust (NW Australian margin, Karner and Driscoll, 1999).  
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2.1.3 Stratigraphy of rift basins 

 

Rift velocity is an important concept for continental breakup and the opening 

of new oceanic basins. A natural distinction can be made between rifts that 

evolved to continental breakup with ocean seafloor spreading and the 

development of passive or conjugate margins, and intracontinental or failed rifts 

that evolved to into thermal sag basins. Rift-related basins and passive margins 

have stratigraphic successions that can be subdivided into pre-, syn-, and post-

rift sequences separated by two key unconformity surfaces that develop owing to 

onset of rifting (ROU) and onset of post-rift (BU or PRU) (McKenzie, 1978; 

Williams, 1993; Withjack et al., 2002). The rift onset unconformity (ROU) 

separates pre- and syn-rift strata and marks erosion and tilting of pre-rift fault-

blocks. The transition from the syn- to post-rift strata is labeled “BU: breakup 

unconformity” in the case of oceanic accretion (Falvey, 1974; Braun and 

Beaumont, 1989), or the “PRU: post-rift unconformity” (Bosence, 1998), or “syn-

rift unconformity” (Nøttvedt et al., 1995) in a failed rift setting (Fig. 2.2.).  

 

 

Figure 2.2: Schematic cross sections and seismic examples (Franke, 2013) showing pre-rift, 
syn-rift and breakup rift evolution of rifts, with formation of a rift onset unconformity (ROU) with 
top-lap truncations of seismic reflectors from below, which is overlain by wedge-shaped syn-rift 
successions. Continental breakup leads to formation of the breakup unconformity truncating the 
syn-rift sediments then onlapped by post-rift successions, and amalgamated with the rift-onset 

unconformity at basin margins. 
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The syn- to post-rift transition physically refers to a basin-wide diachronous 

time-line, which records a change from fault-controlled subsidence with 

lithospheric stretching and heating, to thermal subsidence with lithospheric 

cooling. In the subsurface this is expressed as an angular unconformity with 

onlaps on tilted fault blocks, depositional or erosional hiatus on rift shoulders, and 

in the deepest parts of rift basins a conformable transitional succession, which 

marks a change from divergent to parallel reflections and/or subtle facies 

variation (Main Porcupine Basin, Moore, 1992; NW Australian margin, Karner and 

Driscoll, 1999; Northern North Sea, Kyrkjebø et al., 2004; Norwegian Sea, Lien, 

2005; West Iberia-Newfoundland margins, Soares et al., 2012; Taranaki Basin, 

New Zealand, Strogen et al., 2014; North Falkland Basin, Lohr and Underhill, 

2015; Pannonian Basin, Balázs et al., 2016; Suez Rift, Bosence, 1998; Rohais et 

al., 2016; Hammerfest Basin, SW Barents Sea, Marin et al., 2017; Fairway Basin, 

Northern Zealandia, Rouillard et al., 2017; Fig. 2.3.).  

 

 

Figure 2.3: Ideal syn- to post-rift transition record after Prosser (1993). 

 

The diachroneity of the syn- to post-rift transition at basin-scale means care 

must be taken as decreasing subsidence rates may indicate waning rate of 

extension, or result from strain localization to a narrower zone of deformation 

(strain softening, Kusznir and Park, 1987). The syn- to post-rift transition records 

deposition during the decay of active extension to complete thermal relaxation, 

and therefore should be regarded as part of the late syn-rift sequence, as they 

are not attributable to the end of rifting sensu stricto (cf. Soares et al., 2012).  
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The magnitude of post-rift subsidence of passive rifted margins in breakup 

is similar to intracontinental basins of 10s to 100s kilometres wide, is generally 

long-lived, and in the order of <10 m/Myr (Xie and Heller, 2009; Armitage and 

Allen, 2010). This is slower than syn-rift subsidence rates in the order of 1-10 

km/Myr (250-400 m/Myr, Suez Rift, Moretti and Colletta, 1987; 1.5-8 m/kyr, Loreto 

basin, Baja California, Dorsey and Umhoefer, 2000; 10 m/kyr, Pattani and Malay 

basins, Southeast Asia, Morley and Westaway, 2006; 3.6 m/kyr, Gulf of Corinth, 

Moretti et al., 2004). The McKenzie (1978) lithospheric extension model assumes 

that thermal subsidence reaches its highest rate (at scale of 10s million years) 

and follows an asymptotic decrease. This reflects exponential subsidence decay 

with cooling of the rift thermal anomaly introduced by lithospheric stretching on a 

timescale of ~100 Myr. However, many rift basins present significant deviations 

from theoretical evolution of tectonic subsidence predicted by classic lithosphere 

stretching models. 

Post-rift subsidence can be delayed with isostatic imbalance and may argue 

for support from the hot asthenospheric mantle at the end of rifting, promoting 

long-lived shallow-marine conditions and subsidence deficit observed for the 

Northwest Australian margin (Karner and Driscoll, 1999), the Iberia-

Newfoundland margin (Péron-Pinvidic and Manatschal, 2008; Franke, 2013) or 

Angolan and Brazilian conjugated margins (Contreras et al., 2010). Thick 

sediment accumulations (2-8 km) can also have a thermal blanketing effect 

delaying the post-rift thermal subsidence of 10-20 Myr by preventing thermal 

dissipation of heat from the mantle that increase thermal gradients of the 

weakened lithosphere and enhance lithospheric flexural strength (Karner, 1991; 

Burov and Poliakov, 2001). In contrast, anomalous heating and high magnitude 

thermal subsidence associated with overestimated stretching factors in predictive 

thermal relaxation models are observed in many extensional back-arc basins 

which evolve with significant post-rift subsidence in the order of 100-600 m/Myr 

(Doglioni, 1995). Such high post-rift subsidence rates can be interpreted as the 

result of lithospheric and deep mantle perturbations associated with dynamic 

topography (>150 m/My) (Burgess et al., 1997; Burgess and Moresi, 1999), 

lithospheric-related processes including mantle delamination and asthenospheric 

upwelling (100 m/My) (New Caledonian Trough and Taranaki Basin, Baur et al., 

2014), or ductile lower crustal flow process related to sediment-load driven crustal 

https://onlinelibrary.wiley.com/doi/full/10.1111/bre.12179#bre12179-bib-0033
https://onlinelibrary.wiley.com/doi/full/10.1111/bre.12179#bre12179-bib-0053
https://onlinelibrary.wiley.com/doi/full/10.1111/bre.12179#bre12179-bib-0016
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thinning (up to 500 m/My) (Pattani and Malay Basins, Southeast Asia, Morley and 

Westaway, 2006; South China Sea, Clift et al., 2015). 
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2.1.4 Surface processes 

 

2.1.4.1 Fault growth and structural heritage 

 

Sedimentation patterns and depocentre migration can provide indications 

on the geometry, subsidence and strain evolution across rift faults, which develop 

on Myr timescales, with fault tip growth and fault segment linkage. Faults can 

grow with simple lateral fault tip propagation (‘isolated fault growth’, Walsh and 

Watterson, 1988), or with propagation of independent fault segments that link up 

along-strike and coalesce downdip to form large fault zones that accommodate 

much of the extensional strain (‘segment growth and linkage’, sensu Trudgill and 

Cartwright, 1994). Alternatively, rapid establishment of full fault length of large 

fault systems can arise with increasing cumulative displacement, accruing 

without significant additional lateral tip propagation and therefore preserving a 

constant length for much of its lifetime (coherent or constant length fault growth 

sensu Walsh et al., 2003; Whipp et al., 2014; Rotevatn et al., 2018; Fig. 2.4.). 
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Figure 2.4: Conceptual model showing the differences with rift development without influence of 
pre-existing structures or with reactivation of pre-existing structures during rifting modified after 
Whipp et al. (2013) and modified after Gawthorpe and Leeder (2000). (a) Fault initiation stage 
record low displacement faults and extensional folds. (b) Fault linkage and strain localization 

onto larger faults whereas faults in strain shadow zones are abandoned. (c) Through-going fault 
phase with localized deformation onto few major fault systems. (d) Structural framework during 
the rift phase with oblique extensional reactivation of inherited rift structures which rapidly reach 
their full-length prior accumulating significant displacement, whereas newly formed structures 
develop perpendicular to inherited reactivate drift structures. (e) During rift climax these newly 
formed structures are rapidly abandoned with strain localization onto larger and older inherited 

faults. 

 

Fault linkage has significant implications for the development and 

distribution of rift depocentres and produces specific onlap/truncation, stratal 

thickness patterns and facies variations depending on its timing in the rift 

evolution. Fault linkage can occur with different displacement rate and on different 

timescale and length scale in rift basins. The early fault linkage in the rift evolution 

is associated with weak subsidence and rapid merging of isolated depocentres 

into a larger one controlled by linked fault border with strain localization onto 

higher-displacement fault systems (1 Myr, Whakatane Graben, New Zealand, 
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Taylor et al., 2004; 2.4 Myr Suez Rift, Jackson et al., 2002). The late fault linkage 

in the rift evolution is associated with formation of larger isolated thick 

depocentres (10-14 Myr, Statfjord East Field North Sea, Dawers and Underhill, 

2000; Usuanga flats EAR, Morley, 2002; 1 Myr, Gulf of Corinth Rift, Bell et al., 

2009). Fault linkage can also occur before major rift deformation with rapid 

establishment of a fixed length fault (i.e. no gradual lateral propagation), and 

results in direct formation of large depocentres bounded by a fixed basin margin 

(Morley, 1999). This contrasts to the fault propagation model, where pre-rift 

basement is progressively onlapped by syn-rift deposits with depocentre 

broadening (Schlische, 1995). Therefore, care must be taken when analysing the 

final structural rift configuration given that the thickest syn-rift depocentres are not 

bounded by the faults that accumulated the highest displacement rates through 

rift evolution, nor were major surface breaking faults during the rift initiation and 

therefore may not reveal subsidence patterns throughout rift development 

(Gawthorpe et al., 2003; Finch and Gawthorpe, 2017). 

The situation may be complicated by pre-existing fabrics. In the case of 

multiphase rifts and/or rifts developed with reactivation of inherited structures, the 

increased strain rate and strain localization onto larger fault zones (mostly 

inherited) promote constant length fault growth (Corti et al., 2007; Fossen and 

Rotevatn, 2016; Jackson et al., 2017; Finch and Gawthorpe, 2017; Rotevatn et 

al., 2018). In the Suez Rift, the characteristic zigzag fault pattern is inferred as a 

result of reactivation of pre-existing fabrics from the Hercynian orogeny and 

Syrian Arc inverted Jurassic rift deep structures which formed major 

accommodation zones for Oligo-Miocene rifting and controlled changes of half-

grabens polarity along-strike the rift (Patton, 1994; Montenat et al., 1998). 

Similarly, in the Tanganyika and Malawi rift the multiple reversals in the sense of 

asymmetry or polarity of half-grabens along-strike is intimately related to 

intervening transfer zones oblique to the main border faults, which accommodate 

deformation with strike slip and mostly represent inherited pre-rift structures 

(Morley et al., 1990). These complex changes of polarity and marked shifts in 

fault locus through time commonly reported in rifts developed with pre-existing 

tectonic fabrics, are also observed in modern rifts which lack strong influence of 

pre-existing tectonic fabrics (Whakatane Graben, New-Zealand, Taylor et al., 

2004; Gulf of Corinth Rift, Bell et al., 2009). Therefore, the variability of rift 

architecture is a result of complex interactions between the mechanical behaviour 
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of both pre- and syn-rift sediments and the way deformation is accommodated by 

fault growth, the obliquity of the extensional strain vector with respect to the 

inherited structural template which can induce local stress perturbation (Thailand 

Rift, Morley et al., 2004; Taupo Volcanic Zone, New-Zealand, Acocella et al., 

2003; Gulf of Aden, Bellahsen et al., 2006; East African Rift, Corti et al., 2007, 

Morley et al., 2011; Norwegian North Sea Rift, Whipp et al., 2014; East Greenland 

Rift, Rotevatn et al., 2018). 

 

2.1.4.2 Sedimentation and subsidence 

 

Sedimentation rates are similar or faster to tectonic uplift and subsidence 

rates across normal faults, and sedimentary loading is comparable to tectonic 

loading. This exerts a strong control on the evolution of deformation, sustaining 

slip of large offset normal faults and affecting the isostatic balance of rift basins. 

Subsidence in rift basins is controlled by thermal and/or mechanical crustal 

thinning and sediment loading or unloading of the crust, which can have the 

potential to increase geothermal gradients. Surface processes exert a strong 

control on the isostatic balance of rift basins, as erosional unloading and flexural 

rebound occur with tectonic uplift and subsidence rate (1-10 km/ Myr), similar to 

sedimentation rates and sedimentary loading comparable to tectonic loading (50-

500 MPa) (Burov and Poliakov, 2001, 2003; Ziegler and Cloetingh, 2004; 

Armitage and Allen, 2010; Cloetingh and Willett, 2013). Sedimentation rates are 

on the order of (0.7-3 m/kyr, Gulf of Aden, Audin et al., 2001; 0.78 m/kyr Gulf 

Corinth Rift, Collier et al., 2000; 1.8 m/kyr, Gulf Corinth Rift, Moretti et al., 2004; 

0.4-1 m/kyr, Whakatane Graben, New Zealand, Taylor et al., 2004; 0.64 m/kyr, 

Inner Moray Firth Basin, Scotland, McArthur et al., 2013). Erosional and 

depositional processes act at a similar time scale, or even faster than tectonism, 

and very high erosion and deposition rates (1.5 m/kyr) can sustain slip of large-

offset normal faults that would be abandoned after a few kilometres of offset for 

lower erosion rates (0.15 m/kyr) (Olive et al., 2014). High sedimentation rates and 

thick sediment accumulations (several kilometres thick) can have a thermal 

blanketing effect. This promotes strain localization, narrow versus wide rift 

geometry, inhibits thermal heat dissipation, increase thermal gradients at depth, 
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and enhances post-rift flexural strength of the lithosphere, thus delaying thermal 

subsidence (Karner, 1991; Burov and Poliakov, 2001).  

In the northern part of the Gulf of Suez, sediment loading induced significant 

subsidence with rift narrowing and bathymetric deepening (Moretti and Colletta, 

1987). A similar response is observed in the Gulf of California, where high 

sedimentation rates promote strain localization and switching from a wide to 

narrow rift geometry (Lizarralde et al., 2007). Here, sediment loading depresses 

crustal isotherms (i.e. thermal weakening) and enhances partial melting that 

counterbalance changes of gravitational forces associated with thinning. The 

hotter the thermal state of the crust, the higher the sediment rate must be to 

reduce crustal buoyancy forces (Lizarralde et al., 2007; Bialas and Buck, 2009). 

In the Gulf of Corinth, erosion and uplift (1.5 m/kyr) of footwall fault-blocks 

bounding the southern margin of the gulf created the modern high-relief 

associated with accumulation of ~1 km of sediments in the gulf interior. Sediment 

loading and lower crustal flow from beneath the depocentre towards rift borders 

induced 900 m of relative sea-level rise with subsidence, sustained uplift and 

growth of steeply dipping faults (Westaway, 2002). Similar onshore erosion and 

high rates of offshore sedimentation (0.3-0.5 m/kyr) induced flow of the ductile 

lower crust away from the basin centre and anomalously high thermal subsidence 

rates during the post-rift development of the Malay and Pattani Basins of 

Southeast Asia (Morley and Westaway, 2006). When sedimentation rates are low 

and/or outpaced by the extension rate, lower crustal flowing towards the rift centre 

will be favoured and will promote low-angle dipping faults, such as in the Basin 

and Range Province or Aegean region (Westaway, 1998). In this scenario, the 

crustal thickness may be relatively uniform across weakly and highly extended 

domains. Necking of the more competent upper and middle crust is compensated 

by lower crustal flow that can be controlled by lateral lithostatic pressure 

variations induced by sediment loading and unloading, and regional-scale 

changes of the geothermal gradient (Westaway, 1998). Therefore, the effects of 

sediment load-driven subsidence can trigger substantial lateral crustal flow and 

strain accommodation by a thickened (~ 30 km) and thermo-mechanically 

weakened crust involving high geothermal gradient >400-500° (McKenzie et al., 

2000). These effects are not expected in “cool” rifts, like the Atlantic margins, but 

are a common feature of high heat flow rift basins associated with subduction 

settings involving more complex processes than accounting by conventional 
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stretching models (Westaway, 1998; Hall and Morley, 2004; Morley and 

Westaway, 2006; Clift et al., 2015). 

 

2.1.5 Back-arc basins 

 

Back-arc rift basins are commonly short-lived (3–15 Myr for rifted back-arc, 

Woodcock, 2004) as they are prone to destruction by compression, and can form 

large extensional regions that progress to crustal separation and opening of 

oceanic basins (e.g. Southwestern Japan Sea, South China Sea, Black Sea). 

Interaction between the two plates involved in subduction induces extensional 

and transtensional stresses in the back-arc, with more dynamic shifting of 

extensional locus and stress field through time than commonly observed in 

intracratonic or failed rifts (East African Rift, North Sea Rift, Suez Rift; Fig. 2.5.). 

Driving mechanisms for back-arc extension include a combination of surface 

kinematics, slab dynamics and interactions with mantle flow. Accommodation of 

back-arc strain involving tectono-magmatic processes, including volcanism and 

hydrothermalism, is promoted by thermomechanical weakening of lithosphere, 

high mantle heat flow and slab fluid flow (Whittaker et al., 1992; Doglioni, 1995; 

Scholz and Campos, 1995; Doglioni et al., 1998; Sdrolias and Müller, 2006). 

 

Back-arc rifts are associated with effects of slab pull, rollback or break-off, 

change in strike of the subducting plate, and mantle flow, in the Mediterranean 

region, Western Pacific region (Schellart et al., 2006) or Southeast Asia region 

(Morley, 2001). Slab retreat alone associated with uniform thickness and 

temperature of the lithosphere results in minor back-arc extension and 

subsidence. However, when stretching a lithosphere of uniform thickness but with 

temperature anomalies, extension and subsidence can be significantly 

enhanced. Large anomalies can occur with delamination processes related to 

post-orogenic lithospheric removal prior to, or during, slab rollback, which form 

high temperature zones that promote back-arc rifting and subsidence (Göğüş, 

2015). Back-arc basins developed with initial orogen collapse of a thickened and 

thermo-mechanically weakened crust and extension with subduction slab 

dynamics, and/or mantle flow or lithosphere delamination processes show 

complex tectonic stress fields interacting with inherited structures (Aegean Sea 
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and Central Greece, Goldsworthy et al., 2002; Zhejiang Province, eastern South 

China, Li et al., 2014; Alboran Basin, Do Couto et al., 2016; Pannonian Basin, 

Balázs et al., 2016).  

 

 

Figure 2.5: Diagram showing the different classes of sedimentary basins and their respective 
lifetime, basement type and deformation style, with estimated heatflow compiled from Blum and 

Hattier-Womack (2009). 

 

2.2 Sedimentation patterns during the syn- to post-rift transition 

 

The analysis of the interplay between tectonics, eustasy, climate, sediment 

source and supply rate in rift basin-fill, requires the identification of genetically 

linked depositional systems developed during distinct tectonic stages (Gawthorpe 

et al., 1994; Howell and Flint, 1996; Dorsey and Umhoefer, 2000; Martins-Neto 

and Catuneanu, 2010). Sediment supply rate in a depocentre depends upon the 

distance of rift basins from hinterland sources (proximal versus distal), and 

sediment yield from intrabasinal sources. The balance of sedimentation and 

accommodation can result in overfilled, balanced, underfilled, and starved basin-

fill, and reflects the variability of documented early rift, rift climax, late rift and early 
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post-rift stratigraphic signatures in marine rift basins (Prosser, 1993; Caroll and 

Bohacs, 1999; Ravnås and Steel, 1998; Figs 2.6-2.7.).  

 

 

Figure 2.6: Conceptual tectono-sedimentary model for marine rift basins (Duffy et al., 2015, 
after Gawthorpe and Leeder, 2000) showing the effects of topography and fault geometry on 

base-level and sedimentation in marine rift basins. 
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Figure 2.7: Conceptual internal architecture of an ideal rift sequence (Martins-Neto and 
Catuneanu, 2009) with coarsening-upward vertical stacking pattern, and shift from underfilled to 

filled and overfilled conditions and correlation with gamma-ray log. 

 

Typically, a rift basin-fill records an evolution from underfilled to overfilled 

conditions. Initially the fill comprises transgressive deposits during tectonically-

driven retrogradation with high subsidence rates and rapid relative sea-level rise. 

A subsequent regressive pattern, overlying a maximum marine flooding surface, 

corresponds to a progradational sequence developed with tectonic waning and 

subsidence decay (Martins-Neto and Catuneanu, 2010). A major weakness of rift 

basin-fill models is that they do not include syn-rift volcanism despite its 

implications for tectono-stratigraphic development of rift basins due to feedbacks 

between surface volcanism, tectonism and sedimentation. Lava flows can create 

dams raising basin margins, caldera collapse induces abrupt volcano-tectonic 

subsidence, cooling and loading of large volumes of dense igneous deposits 

increase hangingwall subsidence, magma retreat from magmatic chambers 

increases local crustal subsidence, hydrothermalism and volcanic activity 

induces modifications of surface morphology (vegetation type, slope gradient) 

with complex catchments reorganization (Orton, 2002; Ziegler and Cloetingh, 

2004; Buck, 2004; Wooller et al., 2009; Rowland et al., 2010; Muravchik et al., 

2011; D’Elia et al., 2018). These processes in volcanic rift basins where 

subsidence patterns are controlled by both tectonism and volcanism (magma 
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composition, supply rate and eruptive style) mean that the distribution of 

sedimentary environments are more complicated that non-volcanic rift basins. 

Most rift basin models propose the recognition of system tracts associated 

with successive tectonic stages of rift evolution, with little to no emphasise on the 

post-rift evolution. The basic scheme of Gabrielsen et al. (1995), who define 

active stretching and thermal subsidence stages, is similar to the syn-rift and 

post-rift differentiation of Bosence (1998). Prosser (1993), Nøttvedt et al. (1995) 

and Ravnås and Steel (1998) provided a more detailed nomenclature and 

distinguish rift initiation, rift Climax (early, mid and late), and immediate or early 

post-rift and late post-rift. Gawthorpe and Leeder (2000) focused on fault 

evolution, considering fault initiation, fault interaction and linkage, through-going 

fault zone stages and fault death stages. A generic description of fault, 

sedimentation and stacking patterns is provided, with a non-exhaustive list of 

controls and processes during the different stages of rift basin evolution, as 

depicted by most of the previously cited rift basin models. 

 

2.2.1 Early rift 

 

Rift initiation is usually depicted starting with distributed and low strain, 

which may produce isolated discrete extension-related fold structures across 

blind faults and low fault displacement rates at surface breaks controlling the 

formation of slowly subsiding local depressions (Gupta et al., 1999; Gawthorpe 

and Leeder, 2000; Dawers and Underhill, 2000; Young et al., 2003; Jackson et 

al., 2002; Bell et al., 2009). Syn-rift strata can develop as divergent wedges 

towards the footwall of surface breaking faults with eventual decrease of stratal 

dips upwards with fault-block rotation or thinning and onlapping across blind faults 

and dipping into the hangingwall (Schlische, 1993, 1995; Gawthorpe et al., 1997; 

Sharp et al., 2000; Khalil and McClay, 2018; Fig., 2.8.). In the last case, 

deformation is accommodated by a range of fault-parallel longitudinal folds (fault-

bend folds with rollover folds or drag folds, fault propagation or “forced” folds) and 

fault transverse folds. Transfer zones play a key role in the rift evolution as they 

connect adjacent extensional basins and constitute routing pathways for 

sediment supply. These structures are often localized as an effect of rift 

segmentation by basement fabrics and form between closely overlapping fault 
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segments that may or not dip in opposing directions (e.g. synthetic or conjugate 

transfer zones). They form either with soft fault linkage, corresponding to relay 

ramps or troughs, or with hard fault linkage, corresponding to transfer faults that 

accommodate displacement via subvertical strike-slip and oblique-slip (Morley et 

al., 1990; Gawthorpe and Hurst, 1993; Athmer et al., 2011; Mortimer et al., 2016; 

Moustafa and Khalil, 2017).  

 

 

Figure 2.8: Example of (A) fault growth folding above blind propagating normal fault with 
thinning an donlapping towards the blind fault and (B) surface breaking fault with wedging and 

thickening towards the fault. (Gawthorpe et al., 1997) 

 

Intracontinental rift basins are dominated by terrestrial depositional systems 

during the early post-rift. A transition to marine conditions tends to occur late 
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during the rift climax or late rift, depending on stretching, subsidence and 

proximity to any adjacent ocean for marine incursion. Extensional faulting 

promotes clastic sediment supply from pre-existing drainage basins that can 

exceed the capacity of isolated shallow basins bounded by small faults. This 

leads to the development of mainly transverse siliciclastic alluvial and fluvio-

lacustrine or fluvio-deltaic systems with aggradational to progradational patterns 

(Prosser, 1993; Schlische and Anders, 1996; Gupta et al., 1999; Gawthorpe and 

Leeder, 2000; Lewis et al., 2015). Sedimentation patterns can vary markedly 

across 10s km in relation to the rift architecture and relative base level change. 

This results in contemporaneous development of extensive fault-transverse 

systems adjacent to large faults, feeding axial turbidites to the hangingwall, and 

minor development of transverse talus cones adjacent to low-relief faults with 

starvation of the hangingwall (Leeder et al., 2002; Duffy et al., 2015; Elliott et al., 

2015).  

Clastic systems and carbonate platforms or reefs systems can develop 

together with fan deltas and deltas along rift basin margins, if hinterland sediment 

supply doesn’t produce deleterious conditions for shallow carbonate factories. 

Also, fault-block highs and large horsts detached from the rift basin margin and 

remaining at shallow-water depths, isolated from clastic supply routes, form ideal 

offshore sites for fault-block carbonate accumulation (Lusitanian Basin, 

Leinfelder et al., 1998; Suez Rift-Red Sea-Gulf of Aden, Cross and Bosence, 

2008). Carbonate sedimentation in rift basins is governed by the structural grain. 

This imparts significant changes in facies distribution and stratal architecture, and 

influences oceanic circulation and wind direction patterns to redistribute water 

and nutrients, which control trophic levels that determine the distribution of 

carbonate producers along the rift (Halfar et al., 2004; Dorobek, 2008; Purkis et 

al., 2012). The arid versus humid climate is an important factor as it controls 

suspended sediments and nutrient delivery by rivers and controls water turbidity, 

and temperature and salinity, which directly impact onto carbonate systems and 

determines whether or not clastic and carbonate systems can be coeval (Leeder 

and Gawthorpe, 1987; Collier and Thompson, 1991; Santantonio, 1994; Cross et 

al., 1998; Bosence, 1998; Cross and Bosence, 2008). Carbonate facies 

distribution is both depth and slope dependant. They tend to form ramps in the 

hangingwall dip slope passing basinward into siliciclastics, whereas they form 

rimmed shelves on footwalls, and their progradation is limited by the steepness 
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of bounding fault scarps (Cross and Bosence, 2008; Dorobek, 2008). On 

footwalls, reefs and microbial encrustations have the potential to develop onto 

slope gradients up to 10s degrees, which are prone to reworking and 

accumulation of carbonate talus fans into the hangingwall (Leeder and 

Gawthorpe, 1987). 

 

2.2.2 Rift climax 

 

During the rift climax, fault linkage and localization of displacement on major 

border fault systems produces significant topography and accommodation with 

high mechanical subsidence rates. This period is also marked by coeval 

abandonment of smaller intra-block faults, and/or faults in strain shadow zones, 

and merging of smaller depocentres into a broader depocentre that migrates 

towards the centre of the hard-linked fault (Gupta et al., 1999; Gawthorpe and 

Leeder, 2000; Young et al., 2002; Jackson et al., 2002; Gawthorpe et al., 2003; 

Cowie et al., 2005). This evolution is associated with rapid increase in water 

depths, depending on the relative sea-level position at the start of rifting, and 

tectonic accommodation outpacing sediment supply rate. The result is underfilled 

rift basins, with development of a range of shallow- to deep-marine or lacustrine 

relatively fine-grained clastic systems with aggradational to retrogradational 

stacking (Prosser, 1993; Ravnås and Steel, 1998). High strain accumulation and 

increasing subsidence rate during the rift climax commonly outpace accumulation 

rates of carbonate systems, which become drowned, and favour an increase of 

intrabasinal clastic supply with fault-block uplift (Leinfelder et al., 1998; Gupta et 

al., 1999; Cross and Bosence, 2008; Dorobek, 2008; Lachkar et al., 2009). 

Divergent and onlap stratal growth geometries, with seismically triggered soft 

sediment deformation structures and slumping develop in the starved centre of 

rift basins. The basin margins are associated with high-relief footwall scarp 

degradation-related coarse-grained clastic detritus adjacent to large linked fault 

border systems. Footwall catchments can develop with fault-block collapse that 

supply large and coarse-grained fan deltas, slope aprons and fault scarp 

degradation complexes (debris and breccias) into immediate hangingwalls 

(Ravnås and Steel, 1997; Leppard and Gawthorpe, 2006; McArthur et al., 2016; 

Rohais et al., 2016; Fig. 2.9). Discrete shallow-marine fringing shoreface and 
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small clastic fans systems may persist in overlap zones between unlinked faults 

or along the hangingwall dip slope (Ravnås and Bondevik, 1997; Dawers and 

Underhill, 2000; Muravchik et al., 2015).  

 

 

Figure 2.9: Model for rift climax deep-marine sedimentation, showing the development of 
coarse-grained slope aprons associated with fault-scarp degradation and restricted catchments 
and submarine fan fed by a larger point source enabling high sediment supply. (Leppard and 

Gawthorpe, 2006) 

 

In a lacustrine basin, the increase of mechanical subsidence does not raise 

the volume of lake water, which is mainly dependent on climatically driven 

precipitation and evaporation. Instead, a relative base level fall would result, 

which commonly is accompanied by a reduction of sediment yield (Lambiase and 

Bosworth, 1995; Ilgard et al., 2005). With increasing subsidence, lacustrine rift 

basins can evolve under marine conditions with the influx of seawater through 

narrow straits. Establishment of marine conditions limit turbid mud underflows 

which otherwise prevail under lacustrine conditions (e.g. Corinth-Pathras, 

Greece, Reggio-Scilla graben, southern Italy, Pessioratis et al., 2000; Zelilidis et 

al., 2003).  
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2.2.3 Late Rift 

 

The late syn-rift is marked by a decline of extensional faulting and the 

remaining extensional strain is taken up by hard-linked large border fault systems. 

These border faults are not always bounding the thickest syn-rift depocentres, 

nor do they correspond to the faults that accumulated the highest displacement 

rates through rift evolution, given the variability of faulting and subsidence 

patterns throughout rift development (Gawthorpe et al., 2003; Young et al., 2003). 

Increased rate of fault-block uplift and erosion can promote the development of 

intrabasinal fault-block catchment-fed sandy shoreface-fed deep-marine turbidite 

systems, with slope fans trapped within intra-hangingwall dip slope 

accommodation (Ravnås and Steel, 1997; Jackson et al., 2011). Large elongate 

depocentres favour the development of axially-sourced deep-marine clastic 

systems taking time to reach the distal part of rift basins away from rift margins 

dominated by fluvio-deltaic clastic systems. Once established, these systems can 

sustain a stable connection with hinterland and form sediment pathways lingering 

during the early post-rift (Prosser, 1993; Ravnås and Bondevik, 1997; Alves et 

al., 2003; Seidler et al., 2004; McArthur et al., 2016). Typically, carbonate 

systems develop during the late syn-rift onto high-relief fault-block highs 

remaining at shallow water depth and results in offshore archipelagos away from 

rift basin margins until clastic sediments trapped into fault-block lows infill 

accommodation (Bosence, 1998; Cross and Bosence, 2008; Dorobek, 2008; 

Purkis et al., 2012). The decrease of fault displacement and/or rapid infill and 

levelling of the fault-related relief with high siliciclastic supply enables subsequent 

footwall to hangingwall carbonate progradation across low-relief topography. This 

can result in formation of a larger composite platform, which tend to evolve from 

a ramp to bypass rimmed shelf margin, whereas elsewhere in the distal part of 

the basin is characterised by sediment starvation (Leeder and Gawthorpe, 1987; 

Fraser and Gawthorpe, 1990; Collier and Dart, 1991; Cross et al., 1998; Bosence, 

1998; Dorobek, 2008). 
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2.2.4 Early post-rift 

 

The early post-rift records a reduction of accommodation with decrease of 

subsidence rate and healing of rift topography which promotes increased 

sediment bypass towards the basin centre. The rate of healing depends on 

sediment yield with intrabasinal supply from local fault-block degradation and/or 

extrabasinal supply from hinterland drainage systems, with increasing control of 

eustasy and thermal subsidence on sedimentation during the late post-rift 

(Prosser, 1993; Ravnås and Steel, 1998; Karner and Driscoll, 1999; Alves et al., 

2003; Lien, 2005; Gabrielsen et al., 2001; Jarsve et al., 2014; Fig. 2.10).  

The syn- to post-rift boundary can be cryptic due the variability of early post-

rift sedimentation patterns and stratal geometry that can be similar to the late syn-

rift (Nøttvedt et al., 1995; Bosence, 1998; Kyrkjebø et al., 2004; Zachariah et al., 

2009; Soares et al., 2012; Jarsve et al. 2014). Furthermore, the cessation of rifting 

is diachronous at basin-scale and isochronous early post-rift sequences can 

produce a range of stratal packages due to the long-lived physiographic imprint 

of rift topography, and inherited accommodation on early post-rift sedimentation. 

The effects of residual early post-rift deformation (related to compaction, 

sediment loading or unloading, brittle deformation with thermal subsidence) have 

the potential to form combined structural-stratigraphic traps with four-way closure 

and pinchout in the early post-rift strata and can be masked when outpaced by 

faster rates of thermal subsidence (Doglioni et al., 1998; Cristallini et al., 2006). 

Early post-rift deformation can result from various mechanisms. 

Gravitational faulting driven by sediment loading and erosional unloading (Burov 

and Poliakov, 2003), or localized “brittle” accommodation of crustal subsidence 

with residual displacement of major basement-involved faults that can produce 

small faults, fault growth folds and large-scale monocline folding at basin borders 

(Sinclair, 1988; Bosence, 1998; Rosas et al., 2007; Monaldi et al., 2008; López-

Gamundí and Barragan, 2012; Lohr and Underhill, 2015). Deformation can be 

induced by far-field stress or compaction, with development of new small faults 

with few 10s metres to 100s metres displacement, nucleated over syn-rift and 

pre-rift faults, (Cristallini et al., 2009; Morley, 2015; Morley and Nixon, 2016; Fig. 

2.11.).   
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Figure 2.10: Conceptual model for the evolution of sedimentation during rifting from shallow- to 
deep- marine setting (Henstra et al., 2018; modified after Gawthorpe and Leeder (2000) and 
Ravnås and Steel (1998). (a) Rift initiation with distributed strain across multiple isolated fault 

segments. (b) Rift climax and through-going fault phase promoting the development of 
transverse sedimentary systems. (c) Fault abandonment and development of axial sedimentary 

systems.  



 46  
 
 

Compaction occurs over short timescales (105-106 years) with sediment 

thickness decrease and porosity loss driven by lithostatic and hydrostatic loading 

within a few hundred metres of burial. The effect of compaction on sedimentation 

is difficult to distinguish from eustasy, isostatic or tectonic subsidence, despite 

representing up to a fifth of total basin subsidence (Reynolds et al., 1991; Hunt 

et al., 1996). Compaction-induced surface deformation during early post-rift 

sedimentation can induce modification of slope gradient and differential 

subsidence. This result in stratal thickness changes and multiple erosional and 

angular unconformities, which can appear similar to effects of tectonic tilting, 

and/or folding and small-scale faulting, and control facies distribution and 

stacking patterns.  

 

 

Figure 2.11: Examples of small-scale early post-rift faults in the Pattani and North Malay basins 
(Morley, 2015) which can be nucleated in the post-rift deposits or which can have relationship 

with syn-rift faults (A2 and B2)or nucleated above basement highs (C2).  
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Compaction-related deformation during early post-rift sedimentation can 

result from different compaction versus sedimentation rates, and/or mechanical 

compaction related to spatial variations in lithological heterogeneity of buried 

strata (facies-dependent compaction with variations of porosity-depth gradients 

lithologies). Furthermore, differential compaction occurs across irregular 

basement physiography with enhancement of antecedent topography (variable 

compaction rate between rigid basement, carbonate build-up, volcanic reliefs and 

overcompacted adjacent hangingwall fills) and natural overcompaction of 

sediments into fault hangingwalls (Bertram and Milton, 1989; Collier, 1989; Barr, 

1991; Cartwright, 1991; Faerseth et al., 1995; Skuce, 1996; Faerseth and Lien, 

2002; Carminati and Santantonio, 2005; Cristallini et al., 2006; López-Gamundí 

and Barragan, 2012; Lohr and Underhill, 2015; Balázs et al., 2017; Fig. 2.12).  

Therefore, in early post-rift setting, both inherited rift topography and early 

post-rift deformation are crucial controls on the development of sedimentary 

environments. Shallow-marine high-energy areas and/or subaerial exposure are 

preferentially found on fault-block highs and deeper marine low energy 

sedimentation in adjacent lows and compaction-induced relief can dictates facies 

distribution, sediment transport processes and flow routing pathways (Modica 

and Brush, 2004; López-Gamundí and Barragan, 2012; Lohr and Underhill, 

2015). Variations of compaction-induced subsidence can produce local 

extensional faulting in the early post-rift cover draping topographic highs, forming 

syn-depositional surface topography able to divert sediment gravity flows which 

can be misinterpreted as the effects of active extensional faulting (Collier, 1989; 

Argent et al., 2000; Modica and Brush, 2004; Lohr and Underhill, 2015; Balázs et 

al., 2017). 

Inherited relief (intrabasinal sources), hinterland topography, size of 

drainage basin (extrabasinal sources), distance of rift basins from sources and 

slope morphology control the productive supply or starvation of early post-rift 

basins, and efficient routing or trapping of siliciclastic influx. Inherited structural 

configuration of transfer zones exerts a more important control during the post-

rift than syn-rift evolution. Transfer zones exert a long-lived control on the location 

of routing pathways, subsurface fluid migration, drainage basins and sediment 

entry points depending on its evolution. This is mainly in function of the capacity 

of sediment supply to be cut-off, or outpace and incise fault-growth relief induced 
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by fault linkage and/or footwall uplift (Gawthorpe and Hurst, 1993; Gupta et al., 

1999; Moustafa and Khalil, 2017; Athmer et al., 2011; Moscardelli et al., 2013; 

Henstra et al., 2016;). 

 

 

Figure 2.12: Example of early post-rift onlap and compaction-related synclines in a half-graben 
(Faerseth and Lien, 2002). 

 

Some rift basins inherit a relatively subdued topography when sediment 

supply is high during the rift climax and late syn-rift, and evolve with little 

subsidence in the early post-rift, which leads to the development of shallow-

marine to continental deposits (Martins-Neto, 2000; Rohais et al., 2016). In 

contrast, significant inherited rift topography remaining as intrabasinal fault-block 

islands undergoes prolonged exhumation and degradation, supplying high or low 

sediment yield according to the exposed bedrock lithology and promotes the 

preferential development of transverse systems sensitive to residual fault-block 

movements and differential subsidence (Leeder et al., 2002; McArthur et al., 

2013; Muravchik et al., 2014). This produces a deep-water early post-rift basin 

configuration similar to the late syn-rift until total submergence, onlap and burying 

of intrabasinal reliefs, and exclusive extrabasinal supply, enable the development 

of axial systems across a more subdued topography characteristic of a post-rift 

configuration (Larsen et al., 2001; Zachariah et al., 2009b; Jarsve et al., 2014; 

McArthur et al., 2016; Henstra et al., 2016).  
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In contrast, when sedimentation rates are outpaced by the subsidence rate 

at the end of rifting, the basin undergoes drowning and draping of intrabasinal 

sources. This promotes sand starvation and development of laterally extensive 

organic-rich marine mudstone deposits, locally accommodating residual faulting 

and compaction during the early post-rift (López-Gamundí and Barragan, 2012; 

Lohr and Underhill, 2015). This underfilled basin configuration results in 

significant inherited relief, which is progressively healed depending on the rate of 

extrabasinal sediment supply whichis controlled by the hinterland drainage 

productivity related to climate and uplift, and sediment bypass or storage. In this 

case, extrabasinal sediment supply with high sediment yield from a humid climate 

and/or favourable hinterland configuration plays a critical role on the timing to infill 

the inherited accommodation and development of sediment balanced to overfilled 

early post-rift sand-rich depocentres (Takano, 2002; Alves et al., 2003; Yu et al., 

2013; Balázs et al., 2017; Marin et al., 2017). Slower infill rates form underfilled 

to balanced depocentres and isolated thin sand-rich depocentres with long-lived 

influence of inherited rift topography (Karner and Driscoll, 1999; Argent et al., 

2000; Lien, 2005). 

 

2.2.5 Late post-rift 

 

The late post-rift records further infill of inherited accommodation and 

healing of intrabasinal topography across rift basins, with conformable deposition 

of tabular strata that onlap onto early post-rift deposits, without complex thickness 

and facies variations across structures (Prosser, 1993; Leinfelder et al., 1998; 

Hadlari et al., 2016). This mature post-rift records basin reorganization with 

bathymetric deepening, drowning of island fault-blocks, and regional slope 

gradient reduction, which enable transport of large sediment volumes to the basin 

centre, with eustasy and subsidence as main factors of control (Prosser, 1993; 

Kjennerud et al., 2001). However, in some rift basins the significant inherited and 

compaction-enhanced rift topography can have a long-lived influence on 

sediment routeing and basin-fill architecture, even during the late post-rift 

sedimentation (Martinsen et al., 2005; Fugelli and Olsen, 2005; Dmitrieva et al., 

2018). 
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2.3 Submarine fans in topographically complex settings 

 

Submarine fans are extensive lobate sand accumulations (lobe complexes) 

formed by sediment gravity flows exiting confinement at the terminus of a feeder 

channel-mouth, and develop with variable dimensions, intrinsic characteristics 

and hierarchy in a range of settings (Normark, 1970; Mutti, 1977; Reading and 

Richards, 1994; Galloway, 1998; Mattern, 2005; Prélat et al., 2009; Cullis et al., 

2018) (Fig. 2.13). The range of size, geometry, architecture and facies in 

submarine fans are the product of interactions between sediment supply, sea-

level changes, and passive or dynamic seabed morphology depending on the 

tectonic setting.  

 

 

Figure 2.13: Classification of lobes, lobe elements and lobe complexes by Prélat et al. (2009) 
and Deptuck et al. (2008) used to characterize submarine fan systems (modified after Cullis et 

al., 2018). 
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Many authors have pointed out the importance of physiography acting at 

the same rank as other factors of control on the stratigraphic architecture of 

sedimentary systems (Ross et al., 1995; Martinsen and Helland-Hansen, 1995; 

Prather et al., 2003; Cattaneo and Steel, 2003; Veiga et al., 2013). The efficiency 

of sediment transfer downslope depends on the slope and basin floor 

accommodation available and the nature of the graded profile. According to the 

style of tectonic deformation and subsidence versus sedimentation rates, these 

topographic features exert a control on sediment dispersal and stacking patterns 

(Smith, 2004; Prather et al., 2012). The volume and composition of sediment 

gravity flows define their ability to decelerate and deposit sediment across low-

gradient slopes (depletive) or erosion and bypass across higher gradient slopes 

(accumulative) (Smith, 2004). 

The effects of seabed topography on the distribution, geometry and 

evolution of fan architecture in response to infill of above-grade slopes have been 

observed in a range of topographically complex settings (Satur et al., 2000; 

Sinclair and Tomasso, 2002; Hooper et al., 2002; Booth et al., 2003; Prather et 

al., 2003, 2017; Hodgson and Haughton, 2004; Adeogba et al., 2005; Pyles et 

al., 2008; Covault and Romans, 2009; Cross et al., 2009; Hay, 2012; Marini et 

al., 2015; Spychala et al., 2015; Jobe et al., 2017; Pinter et al., 2017; Bell et al., 

2018).  

 

2.3.1 Intraslope lobes 

 

Sediment routing and partitioning from shelf to slope and basin-floor can 

result in an increase of sand downslope and development of extensive (>100 km) 

base-of-slope and basin-floor fans across unconfined basin plains (Mississipi, 

Twichell et al., 1991; Amazon, Jegou et al., 2008; Zaire, Savoye et al., 2000; Nile, 

Migeon et al., 2010). Intraslope lobes form in ponded slope accommodation 

(three dimensionally enclosed basins), or partially confined in perched or healed 

slope accommodation, or in laterally confined tortuous corridors (Prather et al., 

2003, 2017; Smith, 2004) (Fig. 2.14).  

Fully confined/ponded systems develop with lower net: gross and commonly 

lack distal lobe fringe deposits and have thick graded bed tops, as the dilute part 

of flows cannot override the confining relief, leading to collapse of high-density 



 52  
 

flows. Progressive smoothing of rugose topography is recorded with a transition 

from initial infill of the ponded slope accommodation until flows can bypass and 

spill across healed slope accommodation and adjust to a new equilibrium profile. 

This results in a fill-and-spill model, first with deposition of ponded flat lying 

onlapping “sheet” sandbodies, then superseded by deposition of perched 

downslope tapering wedge-shaped fill and bypass sequence of sheet 

sandbodies, channels and mass-transport deposits downlapping onto the ponded 

sequence (Beaubouef and Friedmann, 2000; Sinclair and Tomasso, 2002; Booth 

et al., 2003; Prather et al., 2003). 

 

 

Figure 2.14: Perspective of perched and ponded aprons of the Brazos-Trinity intraslope basin in 
the Gulf of Mexico (Prather et al., 2017). 

 

In contrast, partially confined systems develop high net: gross successions 

and lack bed-scale heterogeneity, due to flow stripping and bypass down system 

of the finer grained dilute flow component. The accumulations are thinner 

compared with ponded accumulations, given the limited slope accommodation. 

Partially or weakly confined intraslope fan development is limited by the healed 

slope accommodation, with preferential sediment trapping across lower gradient 

steps and bypass across higher gradient ramps, which can result in simple lobe 

trapping across steps (Ferry et al., 2005; Brooks et al., 2018), or transient fan 
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development when spilling in the downdip outboard basin occurs, and record a 

stratigraphic transition upwards of sediment bypass through channel incision, 

until adjustment to a lower base level (Hooper et al., 2002; Smith, 2004; Adeogba 

et al., 2005; Gamberi and Rovere, 2011; Deptuck et al., 2012; Hay, 2012; 

Spychala et al., 2015; Jobe et al., 2017) (Fig. 2.15). In structurally more complex 

partially confined slope and basin-floor settings, transverse fan systems develop 

more erratically with common flow deflection (Gervais et al., 2004; Romans et al., 

2009; Bourget et al., 2011; Burgreen et al., 2014; Mignard et al., 2019) (Fig. 2.16). 
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Figure 2.15: Conceptual model for the depositional evolution of a stepped slope profile describing 
the depositional and erosional response of sediment gravity flows to slope build-up and reduction 
of accommodation (Hay, 2012). 
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Figure 2.16: Interpretative sketch showing the architecture of the Ogooue along ramp and step 
slope (a) and bathymetric profile showing the subtle changes of slope gradient (<2) (b) which 
control changes in sedimentary processes and sand distribution in intraslope basins. 
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2.3.2 Early post-rift lobes 

 

Narrow rift basin margins have a fixed structural shelf edge position, fronted 

by a slope with a thin sediment blanket resulting from sediment bypass, or by 

topographically complex above-grade slopes inherited from rift basin 

physiography (Leeder et al., 2002; Ford et al., 2007; Helland-Hansen et al., 2012; 

Strachan et al., 2013; Weiß et al., 2016). Insights on the palaeotopographic 

configuration, distribution and morphology of early post-rift sand-rich 

accumulations across complex slopes have been gained from subsurface studies 

(Argent et al., 2000; Modica and Brush, 2004; Martinsen et al., 2005; Fjellanger 

et al., 2005; Gjelbeg et al., 2005; Fugelli and Olsen, 2005, 2007; Jackson et al., 

2008; López-Gamundí and Barragan, 2012; Moscardelli et al., 2013; Lohr and 

Underhill, 2015; Dmitrieva et al., 2018; Dodd et al., 2019).  

Early post-rift lobes tend to heal the local accommodation of above-grade 

portions of the slope inherited from rift structures, and share characteristics of 

partially confined tortuous corridors and structurally controlled intraslope basins 

bounded by tectonically induced bounding slopes. The early post-rift submarine 

fan distribution, geometry, architecture, stacking patterns and facies, depends on 

the inherited rift topography and syndepositional renewal of accommodation 

controlled by differential sediment loading and compaction across fault-blocks 

(Argent et al., 2000; Faerseth and Lien, 2002; Modica and Brush, 2004; Fugelli 

and Olsen, 2007; Jackson et al., 2008; Kane et al., 2010; Lohr and Underhill, 

2015) (Fig. 2.17). The geometry of early post-rift submarine fans takes the shape 

of the confining intraslope accommodation, rather than following established 

relationships between fan geometry and flow efficiency in unconfined systems 

(Mutti, 1992; Reading and Richards, 1994; Gardner et al., 2003). 
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Figure 2.17: Seismic line along-strike the Late Cretaceous Kyrre slope fan across the Måløy 
Slope and reflection strength amplitude map of depositional systems showing the effect of 

compaction-related topography onto development of early post-rift sand distribution across the 

slope (Jackson et al., 2008). 

 

In order to predict the degree of confinement the morphology and 

topography of the accommodation at the time of deposition needs to be 

understood. This can be constrained from onlap geometry and facies distributions 

(Kneller et al., 1999; McCaffrey and Kneller, 2001; Smith, 2004; Gardiner et al., 

2006; Amy et al., 2007; Pyles and Jennette, 2009; Bakke et al., 2013; Marini et 

al., 2015) (Figs 2.18 and 2.19).  
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Figure 2.18: Example of lateral onlap of intraslope fan offshore West Africa showing three-
dimensional seismic root-mean-square map of stratigraphic traps on a semiconfined basin slope 
and interpretation sketch showing two sandstone-prone units with different termination styles 
(Bakke et al., 2013). 

 

 

Figure 2.19: Diagram showing the different sandy versus heterolithic pinchout styles (Bakke et 
al., 2013).  
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Large volume flows relative to the size of the receiving basin, will interact 

with bounding slopes and promote onlap at basin margins and/or remobilisation 

(Haughton, 1994). Smaller volume flows will deposit tapering beds that offset 

basin margins, with axial to lateral and proximal to distal facies and bed thickness 

changes. Flows that encounter against oblique lateral or frontal confining slopes, 

can undergo deceleration, deflect and/or reflect, initiate internal waves (Patacci 

et al., 2015; Tinterri et al., 2016, Ge et al., 2017) and partially or completely 

transformation, leading to deposition of hybrid event beds (Smith et al., 2004; 

Muzzi Magalhaes and Tinterri, 2010; Patacci et al., 2014; Southern et al., 2015; 

Marini et al., 2015; Bell et al., 2018; Dodd et al., 2019) (Fig. 2.20). 
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Figure 2.20: Example of early post-rift slope apron type lobes developed in the Sea Lion Fan 
showing the geometry and distribution of facies associations at the scale of lobes developed in 

a lacustrine setting (Dodd et al., 2019). 
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2.3.3 Interactions of sediment gravity flows with seabed topography 

 

The effects of inherited fault relief on sediment gravity flow behaviour 

(bypass versus deposition, flow transformation, flow trajectory) and the resulting 

changes in the distribution, nature and thickness of deposit remains poorly 

constrained (Ferentinos et al., 1988; Alexander and Morris, 1994; Hodgson and 

Haughton, 2004; Pochat et al., 2007; Athmer, 2010; Weiß et al., 2016; Henstra 

et al., 2016; Gee et al., 2002; Ge et al., 2017).  

Besides controlling submarine fan geometry, architecture and stacking 

patterns, seabed topography influences the finer scale distribution of depositional 

and erosional processes and sediment dispersal patterns (Monterey fan, Klaucke 

et al., 2004; Golo fan, Gervais et al., 2004; Hueneme fan, Romans et al., 2009; 

Villafranca fan, Gamberi and Rovere, 2011; Makran fan, Bourget et al., 2011; 

Mignard et al., 2019). Interactions between seabed relief and sediment gravity 

flows depend of the initial flow rheology, velocity, volume, thickness, and the 

height orientation, gradient and lateral extent of the topographic relief (Kneller 

and Branney, 1995). Dilute turbidity currents can override seabed obstacles with 

limited flow deviation, whereas high-concentration turbidity currents and cohesive 

debris-flows tend to be deflected and preferentially trapped to adjacent lows (Gee 

et al., 2002; Bakke et al., 2013) (Fig. 2.21). Interaction with topographic highs 

(10s m) can promote flow decoupling and deviation of the fluidal and more 

cohesive flow components. Turbidity currents can be diverted along inherited 

relief for 100s km, contributing to segregating flow components, with debris-flow 

deposits updip and deposition of turbidite fans downdip (Modica and Brush, 

2004). 

Flows passing across an extensional fault can deposit (Alexander and Morris, 

1994; Kneller and Branney, 1995) and/or incise (Adeogba et al., 2005; Gamberi 

and Rovere, 2011) the footwall high, and deposit downdip due to rapid flow 

expansion and deceleration. Flows passing down a topographic step can 

undergoe a hydraulic jump at break-of-slope (Komar, 1971; Brook et al., 2018) 

with change of hydraulic regime (supercritical to subcritical conditions) 

accompanied by enhanced erosion, bypass, and development of chute and 

pools, scours, antidune or cyclic steps (Pochat et al., 2007; Bourget et al., 2011; 

Henstra et al., 2016; Weiß et al., 2016; Ge et al., 2017). Perturbations of flow 
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structure at a break-of-slope can enhance sediment transport (Gray et al., 2005) 

or deposition with rapid flow deceleration (Ferentinos et al., 1988; Leppard and 

Gawthorpe, 2006; Pochat et al., 2007; Henstra et al., 2016).  

 

 

Figure 2.21: Diagram showing the variable interaction of a range of sediment gravity flows with 
seabed topography, depending on their laminar (L) or turbulent (T) behaviour and co-genetic 
turbulent-laminar or transitional behaviour, with flow classification after Haughton et al. (2009) 
(Bakke et al., 2013).   

 

An increase of slope gradient and/or flow constriction enhances grain-size 

segregation erosion with increased flow turbulence and acceleration (Kneller et 

al., 1999; McCaffrey and Kneller, 2004). Entrainment of muddy substrate can 

dampen turbulence and enhance flow deceleration, with development of a quasi-

laminar plug in the upper more cohesive part of the flow (Baas et al., 2011; Kane 

and Pontén, 2012; Baas et al., 2016; Kane et al., 2017; Southern et al., 2017; 

Dodd et al., 2019; Fig. 2.20). Eroded semi-lithified cohesive muddy substrate can 

break down into smaller clasts with a lower propensity to produce a significant 

enrichment of the flow in clay. Flow bulking with increased proportion of clay can 

dampening flow turbulence (Baas and Best, 2002) and promotes flow partitioning 

with co-genetic evolution of turbulent and more cohesive flow (Haughton et al., 

2003; Talling et al., 2004; Ito, 2008; Hodgson, 2009). At a larger scale, 

delamination of semi-lithified muddy substrate with injection at the base of flow, 

scouring and entrainment of larger muddy to heterolithic or sandy clasts and 

blocks, are even more difficult to mix in flows and remain carried as traction load 

(Fonnesu et al., 2015). The resultant distribution of sand-rich versus mud-rich 
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deposits across topography, and the development of bed-scale heterogeneity in 

potential sand-rich accumulations, can form flow baffles within reservoirs (Amy et 

al., 2009) and reduce the porosity and permeability of reservoirs (Porten et al., 

2016) (Fig. 2.22). 

 

 

Figure 2.22: Model illustrating the change in porosity, permeability and quartz cementation in High 
Density Turbidites (HDT), Hybrid Event Beds (HEB) and Low Density Turbidites (LDT). Dashed 
lines represent previously published depth trends for reservoir sandstones of the Norwegian 
continental shelf (see Porten et al., 2016). The variability in evolution of reservoir properties with 
burial is controlled by original sediment composition (grain-size, sorting, detrital clay content and 
ductile grains) and quartz cementation. 
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Chapter 3 Introduction to the Neuquén Basin 

 

3.1 Introduction  

 

The Neuquén Basin is a triangular-shaped basin. The western margin runs 

700 km and is defined by the Andean magmatic arc, including the Main Andean 

Cordillera and the Coastal Coridllera of Chilean Andes. The basin is relatively 

narrow to the north between 31° and 36°S and broadens up to 400 km wide 

southwards between 36° and 40°S (Fig. 3.1). The basin is bounded to the 

northeast by the Sierra Pintada belt (San Rafael and Las Matras Block) and to 

the south by the North Patagonian Massif (Somùn Cura), which represent pre-rift 

cratonic basement (Uliana and Legarreta, 1993). West of the Andean orogenic 

front, the Andean sector located along the Main Andean Cordillera underwent 

strong compressive deformation. In contrast, the Neuquén Embayment east of 

the Andean orogenic front underwent little compressive deformation due to its 

foreland position. 

The Neuquén Basin comprises a ~7 km thick Triassic to Early Paleogene 

succession that records post-orogenic thermo-mechanical collapse and volcanic 

rifting from Late Palaeozoic to Early Jurassic and extensional back-arc sag from 

Early Jurassic to Early Cretaceous. The basin-fill underwent multiple episodes of 

Late Cretaceous-Cenozoic structural inversion, with subduction-driven foreland 

compression that formed the Andean fold and thrust belt and a Cenozoic foreland 

basin (Legarreta and Uliana, 1991; Vergani et al., 1995; Legarreta and Uliana, 

1996; Franzese and Spalletti, 2001; Franzese et al., 2003; Howell et al., 2005; 

Ramos et al., 2011; Figs 3.2-3.3). 
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Figure 3.1: Map of the Neuquén Basin. 
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Figure 3.2: Bloc diagrams showing the main stages of basin evolution from Late Triassic to 
Cenozoic (Howell et al., 2005). (A) Late Triassic-Early Jurassic time with opening of rift basins. 
(B)Jurassic-Early Cretaceous evolution in a back-arc setting with subduction along the western 

Gondwana margin. (C) Late Cretaceous Andean uplift and foreland evolution with fold and 
thrust belt development.  
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Figure 3.3: Chronostratigraphic chart of the Neuquén Basin (Howell et al., 2005).  
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3.2 Orogen to rift evolution: Palaeozoic to Early Jurassic  

 

3.2.1 Pre-Andean to Pangea breakup evolution 

 

Several geodynamic models explain the latest Proterozoic to Late 

Palaeozoic period of crustal accretion that took place prior to intracontinental 

rifting and Pangea breakup. Initially, a Late Precambrian to Early Cambrian 

Pampean orogeny formed with continent-continent collision of Cuyania terrane 

against the Gondwana margin (Rapela et al., 1998; Ramos et al., 2014). This 

orogen was superseded by the Early Ordovician to Silurian Famatian orogeny, 

associated with a compressional magmatic arc bounding subduction along the 

convergent southwestern Gondwana margin (Pankhurst et al., 2006, 2014; 

Rapela et al., 2016). The Famatian orogeny resulted in collision of the 

Mesoproterozoic Precordillera or Cuyania terrane (including the San Raphael 

and Las Matras blocks) with the Paleoproterozoic Pampean orogenic belt 

(Pampia basement), followed by the Late Devonian-Early Carboniferous collision 

with the Chilenia terrane during the Chanic orogen (Rapalini, 2005; Llambías and 

Sato, 2011; Pankhurst et al., 2006, 2014; Ramos, 2008; Ramos et al., 2014; 

Rapela et al., 2016). Finally, western Gondwana, represented by the Cuyana, 

Pampia and Chilenia terranes, was accreted to the Patagonian terrane (North 

Patagonian or Somun Cura Massif) during the Late Carboniferous-Early Permian 

San Raphael orogen (Mpodozis and Ramos, 1990; Llambías et al., 2003; Ramos, 

2008).  

The post-orogenic tectonic behaviour of the western Gondwana margin 

since the Early Permian was contrasted. South of 40°S, the central Patagonian 

batholith developed with arc magmatism and subduction (Rapela et al., 2005; 

Echaurren et al., 2017), whereas north of 37°S subduction was interrupted from 

Permian to Early Triassic (Kay et al., 1989; Mpodozis and Kay, 1992; Llambías 

et al., 2007). A change in plate boundary conditions, and decrease in 

compression, resulted from locking of the subduction and slab break-off, with 

opening of an asthenospheric window. This led to anomalous heating of the upper 

mantle and large-scale crustal anatexis since Early Permian (Mpodozis and Kay, 

1992; Franzese and Spalletti, 2001; Llambías et al., 2003; Pankhurst et al., 2006). 

Profuse Permo-Triassic magmatism and intracontinental transtension subparallel 

to the western Gondwana margin accompanied the transition period from 
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compression to orogenic collapse (Uliana et al., 1989; Franzese and Spalletti, 

2001; Ramos, 2008). The Late Permian-Middle Triassic thermomechanical 

orogenic collapse and opening of continental rift systems was marked by 

production of large volumes of intermediate and acid magmas. This lead to 

formation of the volcano-plutonic Choiyoi Province that represents the largest 

silicic magmatic event of the western Gondwana (from 21°S to 44°S) (Kay et al., 

1989; Llambías et al., 2003; Franzese et al., 2003; Ramos et al., 2011). 

Late Triassic to Early Jurassic intracontinental rifting (failed rift) lasted ~ 30 

Myr across western Gondwana (30°S-40°S), with widespread extensional 

volcanism associated with bimodal magmatism during a period of very slow 

subduction along the proto-Pacific margin (Uliana et al., 1989; Mpodozis and 

Ramos, 1990; Llambías et al., 1990; Tankard et al., 1995; Franzese and Spalletti, 

2001; Franzese et al., 2003; Fig. 3.4.). The transition from extensional orogenic 

collapse to rifting is recorded by a change of volcanic rock composition. This 

change reflects initial provenance from superficial magmatic chambers that 

produced large batholiths and ignimbritic fields of the Choiyoi Province, to deep-

seated mantelic magmas, which produced less evolved volcanic syn-rift rocks 

(basalts, andesites, dacites and rhyolites) (Llambías et al., 2003, 2007).  
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Figure 3.4: Schematic cross section showing the Late Palaeozoic to Middle Jurassic 
geodynamic evolution of the southwestern Gondwana margin and the Neuquén Basin 

(Franzese and Spaletti, 2001). 

 

3.2.2 Pre- and syn-rift sedimentation 

 

The pre-rift basement includes Late Devonian-Early Carboniferous low-

grade (greenshist) metasedimentary rocks (Piedra Santa Complex) (Franzese, 

1995) intruded by Late Carboniferous-Early Permian calco-alkaline plutons 
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(grabbros to pegmatitic granitoids) (Chachil Plutonic Complex and Cerro Granito, 

Leanza, 1993). These plutons represent the Choiyoi Group in the southern 

Neuquén Basin, whereas in the north the Choiyoi Group is represented by Late 

Permian-Early Triassic silicic igneous rocks (mainly rhyolites and ignimbrites) 

(Llambías et al., 2003, 2007). The Piedra Santa Complex, and intrusive plutons 

located in the south of the Neuquén Basin, can be correlated with the 

Metamorphic Complex of the Coastal Belt (Central Chile), which forms a 

Devonian-Early Permian igneous-metamorphic belt cored by Carboniferous-

Permian granitoids (Franzese, 1995). Prior to deposition of syn-rift deposits, the 

basement underwent large-scale taphrogeny and regional erosion during a long 

period of exhumation recorded by the Early-Middle Triassic Huarpican 

unconformity, with a maximum hiatus of 82 Ma (Llambías et al., 2007; Schiuma 

and Llambías, 2008). 

Late Triassic-Early Jurassic extension developed with effusive and 

explosive volcanism, which controlled the opening of narrow rift basins (150 km 

long, 50 km wide) bounded by planar and listric faults with high rates of 

mechanical and volcano-tectonic subsidence (Franzese and Spalletti, 2001; 

D’Elia et al., 2018). Syn-rift continental volcano-sedimentary deposits (Norian-

Sinemurian) mainly result from primary and reworked volcanic deposits, and form 

the Precuyano Cycle dated in the South of the Neuquén Basin from 219 to 182 

Ma (Rapela et al., 2005; Pángaro et al., 2002; Schiuma and Llambías, 2008). The 

syn-rift deposits infill rift half-grabens and grabens, with abrupt thickness changes 

from few metres to 100s m and up to 2 km thick at outcrop (Franzese et al., 2006) 

and up to 3.6 km thick in subsurface (Pángaro et al., 2002; Bermudez et al., 

2002). The Precuyano Cycle is bounded by the Rioatuelican or Intra-Liassic 

unconformity, which marks the unconformable contact with marine deposits of 

the Cuyo Group (Pliensbachian-Bathonian) (Gulisano et al., 1984; Gulisano and 

Gutiérrez Pleimling, 1995; Legarreta and Uliana, 1996; Schiuma and Llambías, 

2008; Pángaro et al., 2009; Leanza et al., 2013). Precuyano Cycle successions 

include basaltic to andesitic and rhyolitic effusive deposits, pyroclastic explosive 

deposits, epiclastic alluvial-fluvial and playa-lake carbonate deposits, which 

locally can be rich in organic matter and form productive source rocks (Legarreta 

and Gulisano, 1995; Pángaro et al., 2002; Bermudez et al., 2002; Muravchik and 

Franzese, 2005; Franzese et al., 2006, 2007; Schiuma and Llambías, 2008; 

Muravchik et al., 2011; D'Elia et al., 2012; D’Elia and Martí, 2013; D’Elia et al., 
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2015). The stratigraphy of the syn-rift Precuyano Cycle in several depocentres 

evolves from basaltic and andesitic deposits to rhyolitic and ignimbritic deposits. 

This records a change from mid- syn-rift climax with mixed mantle-crust sources 

and basic to mesosilicic magmatism to overlying upper syn-rift climax acid 

explosive volcanism with silicic magmatism. This evolution reflects a shallower 

provenance from magmatic reservoirs at the mantle-crust interface through rifting 

(Franzese et al., 2006; D’Elia, 2010). 

 

3.2.3 Rifting mechanism in the Neuquén Basin 

 

Two main mechanisms were responsible for the transition from regional 

contraction to extension, which culminated with the Late Triassic-Early Jurassic 

rifting, but did not reached the point of continental breakup with ocean seafloor 

spreading. These two processes are: (i) orogenic collapse with the release of 

excess gravitational potential energy from an unstable, uplifted and thickened 

lithosphere, and (ii) widespread post-orogenic magmatism and high geothermic 

gradients that was critical for thermal weakening and mechanical stretching of the 

lithosphere (Dewey, 1988; Uliana et al., 1989; Ramos and Kay, 1991; Tankard et 

al., 1995; Franzese and Spalletti, 2001; Llambías et al., 2007). Similar delays (50-

60 Ma) between the end of orogeny and onset of extension were required to 

achieve sufficient thermal relaxation and thermo-mechanical weakening of the 

lower crust and lithosphere in other post-orogenic rift basins associated with 

subduction. In such systems, crustal overthickening alone was insufficient to 

trigger extensional collapse and required additional mantle processes for thermal 

weakening (Basin and Range province, Liu and Shen, 1998; Rahl et al., 2002; 

Pannonian and Alboran basins, Houseman et al., 2007; Zhejiang Province of 

eastern South China, Li et al., 2014). In these systems, strain rate and total 

extension are proportional to the thermal state of the lithosphere. Therefore, the 

greatest extension is achieved for a given driving force when thermal relaxation 

heats the lithosphere to the maximum. This can result in either dominant pure 

shear or strain partitioning with simple shear when laterally offset weakness 

zones are present (i.e. high heat flux or thickened zones in the lithosphere) 

(Braun and Beaumont, 1989).  
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The presence of basement weakness zones and large-scale intraplate 

structures inherited form the orogenic collapse controlled the style of brittle 

deformation in the upper crust, and accommodates extension with considerable 

strain partitioning during rifting in the southern Neuquén Basin. Crustal 

decoupling resulted in ductile extension along a décollement surface or master 

shear zone (~ 12 km depth) in the lower crust and asymmetrical brittle normal 

faulting in the upper crust, with an estimated stretching factor of β= 1.33 

(Sigismondi and Ramos, 2011).  

An oblique master shear, located between 16 and 18 km depth within the 

upper crust (which base is ~ 24 km depth), has also been recognized in the 

Central Neuquén Basin, dipping 4-5° to 8° from the Bajada de Anelo to the 

Chihuidos-Las Carceles area (Comingues and Franzese, 2008). Rifting in the 

Neuquén Basin is also characterized by an asymmetric thermal subsidence 

pattern with respect to the locus of extension and flexural isostatic compensation 

(Sigismondi and Ramos, 2011). These features, together with the shift observed 

between the locus of syn-rift versus post-rift depocentres, do not fit with a uniform 

pure shear lithospheric stretching model. Instead, they are characteristics of 

simple shear in non-uniform stretching models (Tucano and Sergipe–Alagoas rift 

Basin in NE Brazil, Karner et al., 1992) or heterogeneous shear in depth-

dependant stretching models associated with volcanism and anomalous thermal 

subsidence relative to crustal stretching (NW Australian margin rift, Karner and 

Driscoll, 1999).  

Rifting in the Neuquén Basin required minimal extensional stress for rupture 

of thickened and thermo-mechanically weakened crust and lithosphere. This is 

characteristic of magma-assisted rifting, which lacks large-scale tectonic 

subsidence relative to the observed long term and large magnitude thermal 

subsidence (Taupo Volcanic Zone, Rowland et al., 2010, Red Sea or Gulf of 

Suez, Buck, 2004). Asthenospheric upwelling, possibly plume generated, 

induced thermal heating and together with arc magmatism permitted rifting at 

lower strain rate than normally required for tectonic stretching (Llambías et al., 

2007; Sigismondi and Ramos, 2011). The increase of geothermic gradient from 

the southern to the Central Neuquén Basin, characterised by the patterns of 

isogrades associated with low-grade diastatermal metamorphism of syn-rift 

deposits (both Precuyano Cycle and Lower Cuyo Group) (Suárez and González, 

2018).  
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The Neuquén Basin rift shares some characteristics with the Basin and 

Range Province (BRP) region. These include accommodation of extension by 

strong mechanical decoupling between the crust and upper mantle, widespread 

magmatism and enhanced lithospheric stretching under high heat flow conditions 

favourable to lower crustal flow (Westaway, 1998, 2002; Buck, 2004; Morley and 

Westaway, 2006). However, rifting of the Neuquén Basin fits a wide rift mode of 

extension, with distributed strain, development of small offset high-angle normal 

faults in the upper crust, and low-angle master faults rooted at mid crustal depths 

accumulating large displacement. This pattern is consistent with the relatively 

moderate thickness of the middle crust and high sedimentation rates involving 

high overburden pressures and crustal loading (Gartrell, 2001). Therefore, this 

contrast with the post-orogenic metamorphic core complex mode of extension 

requires very low crustal loading as sedimentation rates are low and/or outpaced 

by the extension rate and development of low-angle dipping faults (BRP, Liu and 

Shen, 1998; Tibet rift, Kapp et al., 2008). High rates of sediment supply induce 

surface loading and thermal effects increasing subsidence, which promote lower 

crustal flow from beneath the depocentre towards rift borders. This in turn 

sustains uplift and development of steeply dipping faults during rifting as seen in 

the Neuquén Basin and other rifts (Suez Rift, Moretti and Colletta, 1987; Corinth 

Rift, Westaway, 2002). During the post-rift , sediment-load driven crustal thinning 

with lower crustal flow will also induce anomalously high thermal subsidence 

rates (Pattani and Malay Basins, SE Asia, Morley and Westaway, 2006; South 

China Sea, Clift et al., 2015). 

 

3.2.3 Structural style and deformation of the Neuquén Basin 

 

The Late Triassic-Early Jurassic rift systems are characterized by variable 

depocentre polarity, vergence and fault orientation across the Neuquén Basin. 

They developed under a dominant NNE-NE extension direction that controlled 

most rift systems of the western Gondwana from the Late Palaeozoic to Early 

Mesozoic. Partitioning of deformation is indicated by variations in structural grain 

from north to south of the Neuquén Basin. This can be correlated to pre-rift 

Palaeozoic basement fabrics trending obliquely to the direction of the extensional 

stress field that induced oblique rifting with reactivation of inherited structures 

(Franzese and Spalletti, 2001; Franzese et al., 2003; Ramos and Folguera, 2005; 



 76  
 

Mpodozis and Ramos, 2008; Silvestro and Zubiri, 2008; Cristallini et al., 2009; 

Giambiagi et al., 2005; Giambiagi and Martinez, 2008; Yagupsky et al., 2008; 

Barredo, 2012; Bechis et al., 2010, 2014; Fig. 3.5). Extension lead to the 

development of normal faults, either parallel or quasi-orthogonal to pre-existing 

structures striking oblique to the extension direction. This relationship resulted in 

a combination of strike-slip and en-echelon fault patterns characteristic of oblique 

rift systems. Upper crust basement fabrics exerted a strong influence on 

kinematics, geometry and deformation locus of the rift that resulted in the complex 

faulting and subsidence pattern.  

 



 77  
 

 

Figure 3.5: Map of the Neuquén Basin showing the distribution of syn-rift depocentres modified 
after (Bechis et al., 2014).  
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At the scale of the basin, extensional strain was preferentially 

accommodated around anisotropies in the upper crust thickened by previous 

convergence and crustal shortening. These areas formed long-lived zones of 

deeply rooted crustal thermal heterogeneity and mechanical weakness (intraplate 

and trans-lithospheric suture zones, foliation, plutonic intrusions) (Franzese and 

Spalletti, 2001; Comínguez and Franzese, 2005; García Morabito et al., 2011; 

Mosquera and Ramos, 2006; Mosquera et al., 2011; Yagupsky et al., 2008; 

Sigismondi and Ramos, 2011; Naipauer et al., 2012; Bechis et al., 2014).  

In the northern basin, NNW- to NW-oriented extensional structures are 

associated with a NNE-SSW stress field, and rift structures propagated 

subparallel to NNE-and NNW-oriented pre-rift structures (Giambiagi et al., 2005; 

Giambiagi and Martinez, 2008; Bechis et al., 2009, 2014; Cristallini et al., 2009). 

In the southern basin, NW- to WNW-oriented structures, organized with relay 

ramps and intervening NE-oriented transfer faults (10 to 100 km long), are 

associated with a NNE-SSW to NE-SW oriented stress field (Vergani et al., 1995; 

Franzese et al., 2006, 2007; Muravchik, 2008, 2014; D’Elia et al., 2012, 2015; 

Silvestro and Zubiri, 2008;; Naipauer et al., 2012). In the southren basin, the 

WSW- and WNW-oriented rift structures developed with E-W-oriented 

reactivation and north-dipping inherited pre-rift structures, whereas NW-oriented 

structures were oblique to inherited basement trends. NW-oriented structures 

accommodated the deepest troughs (NE-SW polarity of grabens with dominant 

vergence towards the E), and WNW-or WSW-oriented structures oblique to the 

main extensional stress field accommodated the shallowest troughs (N-S polarity 

of grabens). This pattern is similar to examples of eastern North America basins. 

Here, reactivated structures controlled the evolution of border faults, which 

formed shallower depocentres when extension was accommodated with a strike-

slip component than when dominated by dip-slip (Schlische 1993). 

In the southern Neuquén basin, two main regional-scale basement-related 

structures are striking: the Huincul High and the Copahue-Pino Hachado Block. 

The Huincul High is a major ENE-WSW trending structure, which is 250 km long 

and 120 km wide in its eastern and central part in the subsurface and 60 km wide 

in its western exhumed part. This structure is a 800 km long regional lineament 

that constitutes the southern border of the Neuquén Basin and extends in Chile 

as a series of conspicuous E-W lineaments (Chernicoff and Zappettini, 2004; 

Ramos, 2008). The Huincul High corresponds to a major intraplate deformation 
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zone developed along an Early Permian suture (Huincul Fault) inherited from the 

accretion between the Patagonia and Chilenia-Cuyana terranes of western 

Gondwana (Chernicoff and Zappettini, 2004; Mosquera and Ramos, 2006; 

Ramos, 2008; Mpodozis and Ramos, 2008). The Cordillera of Catán-Lil and 

Chachil correspond to the southwards prolongation of the Copahue-Pino 

Hachado Block, a pre-rift basement-cored structure bounded by NNW- and NW-

oriented faults. These faults were preferentially affected by the Andean 

compression compared to NE-oriented structures and formed west-verging 

thrusts that promoted uplift and exposure of Mezozoic depocentres (García 

Morabito et al., 2011). Such basement-involving structures exerted a control on 

isopach distribution as they had a considerable influence on post-rift subsidence 

patterns, and formed preferential sites for differential compaction and folding 

(Cristallini et al., 2006; Yagupsky, 2009). In the central part of the Neuquén Basin, 

compaction-induced differential subsidence promoted the development of NW-

oriented compaction faults parallel to NW-oriented rift faults, and NW-NNW (N 

130-160) oriented en-échelon faults above oblique W-NW-oriented structures (N 

110) associated with dextral strike-slip (Silvestro and Zubiri, 2008). 

 

3.3 Back-arc to foreland evolution: Jurassic to Cenozoic 

 

3.3.1 Syn- to post-rift post-rift back-arc evolution 

 

3.3.1.1 Onset of subduction and Early Andean volcanic island arc  

 

During the Late Triassic, the Neuquén Basin was located at its 

southernmost position (50°S) and reached its northernmost position during the 

Early Jurassic (Late Pliensbachian-Early Toarcian) (25°S) (Iglesia-Llanos et al., 

2006; Iglesia Llanos and Prezzi, 2013). Onset of the Early Andean subduction 

occurred with oblique SE-oriented convergence of the proto-Pacific oceanic plate 

(Aluk plate) below the western Gondwana margin, with steep slab and negative 

trench rollback (Ramos, 1999; Mosquera and Ramos, 2006; Mpodozis and 

Ramos, 2008; Ramos et al., 2011; Fig. 3.6). The negative trench rollback and 

generalized extension was related to the northeast absolute motion of the 

western Gondwana during Early Mesozoic (Ramos, 2010). Subduction was a 

result of far-field plate stress.  
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Figure 3.6: Schematic cross sections showing the change from (a) Early Jurassic-Cretaceous 
intra-arc extension, (b) stationary stage during the Aptian-Albian and (c) Late Cretaceous to 

present Andean compression (Ramos, 2010.)  
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Ocean growth occurred along a series of spreading centers between the 

North and South America, and during Wedell Sea openning as a consequence of 

the Central Atlantic Magmatic Province hotspot activity and separation 

Gondwana (Mpodozis and Ramos, 2008). Subduction started along Chile (20-

30°S) during the Late Triassic (Rhaetian-Hettangian) (Oliveira et al., 2018), in the 

Neuquén Basin during the Late Triassic to base of Early Jurassic (Simenumurian-

Pliensbachian), and in the Chubut Basin of northern Patagonia (40-45°S) during 

the Early Jurassic (Early Pliensbachian) (Rapela et al., 2005).  

The Early Andean magmatic arc is exhumed along the axis of the Coastal 

Cordillera of Chile north of 36°S and south of 40°S (Subcordilleran Bahtolith) 

(Rapela et al., 2005; Llambías et al., 2007). This magmatic arc is represented in 

the Neuquén Basin near 38°S by Pliensbachian-Early Toarcian tholeiitic basalts 

with island arc signature (De la Cruz and Suárez, 1997). In the Neuquén Basin, 

magmatic arc activity was recorded by a range of calc-alkaline volcanic and 

reworked volcanic deposits emplaced in the Central Neuquén Basin since Late 

Triassic (Llambías et al., 2007), and in the southern Neuquén Basin along the 

Huincul High since Late Triassic (Bermudez et al., 2002) to Early Sinemurian 

(199.0 +-1.5 Ma) (Schiuma and Llambías, 2008). In the southernmost part of the 

Neuquén Basin arc-related volcanic deposits are recorded since Late Sinemurian 

(191.7- 2.8 Ma) (Spalletti et al., 2010). 

 

3.3.1.2 Marine flooding of the Andean Basin and syn-to-post-rift transition 

 

The narrow Andean Basin, bounded by to the west by the insular Early 

Andean magmatic arc, included the Tarapacá, Aconcagua, Neuquén and Chubut 

back-arc basins developed along the western Gondwana margin and 

progressively flooded from north to south, from Late Triassic to Early Jurassic 

(Viciente et al., 2005; Fig. 3.7). Marine transgression from the Panthalassic 

Ocean started in the northern Peru and Chile since Late Triassic in the Tarapacá 

and Aconcagua Basins connected to the Taltal Strait (Fantasia et al., 2018). 

Transgression started in the north of Argentina since the Late Triassic 

(Hettangian) through the Curepto Gulf (34°S) with flooding of the Atual-Malargüe 

depocentre (Vicente 2005, 2006; Lanés et al., 2008). The Neuquén Basin was 
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then flooded during Early Pliensbachian (Gulisano and Gutiérrez Pleimling, 1995; 

Damborenea et al., 2013; Leanza et al., 2013; Riccardi and Kamo, 2014). 

 

 

Figure 3.7: Palaeogeographic evolution of the Neuquén Basin with marine flooding during the 
Early Jurassic (Damborenea et al., 2013). (a) Palaeogeographic reconstruction of the Neuquén 

Basin as part of the southwestern Gondwana. (b) Representation of the the Early Jurassic 
palaeoseaway of marine flooding from Peru to the Chubut Basin to the south. (c) Map showing 

the distribution of depositional environments in the Neuquén Embayment. 

 

Finally, the Early Jurassic sea reached its maximum extent during the Late 

Pliensbachian-Early Toarcian when flooding the southernmost Chubut Basin 

(Suárez and Marquez, 2007; Ferrari and Bessone, 2015; Fig. 3.7). The similarity 

and migration pathways of marine invertebrate fauna suggest a 

palaeobiogeographic connection between the Neuquén and Chubut basins 
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during the Late Pliensbachian-Early Toarcian (Damborenea et al., 2013; Ferrari 

and Bessone, 2015). However, some uncertainties remain on whether these 

three depocentres were connected to the Panthalassa via a single seaway 

corresponding to the Curepto Gulf, and/or had separate connections through 

narrow corridors that dissected the Early Andean volcanic island arc along the 

western Gondwana margin (Gulisano and Gutiérrez Pleimling, 1995; Viciente et 

al., 2005; Ferrari and Bessone, 2015). Extension and subsidence resulted in low-

relief topography of the Early Andean magmatic arc that contrasts with the 

present Andean-type arc configuration (Ramos, 2010), the volcanic arc might 

have acted as a palaeogeographic barrier for marine ingression along the Andean 

Basin (Viciente, 2005). At the scale of the Neuquén Basin, transgression was 

enhanced when subparallel to the structural grain and slowed across 

morphological steps, which led to the development of an epeiric sea across 

complex Early Jurassic rift topography with local fault-block islands that formed 

the Neuquén Embayment (Legarreta and Uliana, 1996). The Neuquén 

Embayment included a central deep-marine basinal depocentre and a series of 

shallower platform depocentres distributed on its southern margin along the 

Huincul High.  

The Early Jurassic marine transgressive event is recorded by the Lower 

Cuyo Group. The development of Early Jurassic marine depocentres with 

flooding of the inherited rift topography and their progressive merging during the 

Middle Jurassic into a single basin-scale sag depocentre is regarded as a 

consequence of regional post-rift thermal subsidence (Legarreta and Gulisano, 

1989; Gulisano and Gutiérrez Pleimling, 1995; Vergani et al., 1995; Legarreta 

and Uliana, 1996; Franzese and Spalletti, 2001; Leanza et al., 2013). However, 

subsurface and outcrop studies have highlighted the heterogeneous spatial 

decay of normal faulting and volcanism with post-rift onset across the Neuquén 

Basin. This pattern does not fit the diachronous southwards progression of Early 

Jurassic marine flooding (e.g. Viciente et al., 2005) nor seem to progress 

diachronously with younging from north to south (D’Elia et al., 2015). Onset of 

the post-rift in the Neuquén Basin is recorded during Early Sinemurian in the 

northernmost area (Lanés et al.,2005, 2008), during Late Pliensbachian-Early 

Toarcian in the southwest (Sanico-Piedra del Aguila) where volcanism ended 

since Early Pliensbachian (D’Elia et al., 2015) and during Early to Late Toarcian-

Aalenian in the southeast (Huincul High) and northwest (Cordillera del Viento) 
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(Silvestro and Zubiri, 2008; Pángaro et al., 2006, 2009; Carbone et al., 2011). 

Volcanism lasted until Early Toarcian, with deposition of subaqueous mixed 

volcaniclastic-epiclastic deposits, which belong the Lower Cuyo Group recorded 

to the northwest (Cordillera del Viento, Primavera Fm., Gulisano and Gutiérrez 

Pleimling, 1995; Llambías et al., 2007) and to the southeast along the Huincul 

High (Los Molles Fm., Bermudez et al., 2002; Cupen Mahuida Fm., Schiuma et 

al., 2011). Triassic to Early Jurassic volcanic deposits record an evolution from 

acidic to less evolved calc-alkaline composition mixing crustal and mantellic 

sources. This is associated with transition from intraplate rifting to back-arc 

extension, and progressive migration of volcanism and Early Andean magmatic 

arc westwards coeval of the syn-to post-rift transition (De la Cruz and Suárez, 

1997; Bermudez et al., 2002; Llambías et al., 2007). Southwestward migration of 

the magmatic arc in the extra Andean Patagonia was accompanied by 

development of the Chon Aike Magmatic Province. The Chon Aike Province 

developed from Early to Middle Jurassic (187-162 Ma) with intracontinental 

extension associated with crustal anatexis and magmatic underplating, and 

closure of the Chubut Basin during the Middle Jurassic (Rapela et al., 2005; 

Suárez and Marquez, 2007; Echaurren et al., 2017). 

 

3.3.1.3 Early Jurassic palaeogeographic changes 

 

Early Jurassic was a greenhouse period during which rates and amplitude 

of eustatic changes were moderate (on the order of 1 m/ kyr, Read, 1995) due to 

the absence of large continental ice caps at high latitudes. The Early Jurassic 

marine depocentres had a normal salinity and water circulation despite receiving 

voluminous freshwater influxes. This point to continuous connection with the 

Panthalassa Ocean, which enabled migration of certain invertebrate species 

between the Panthalassa and Tethys (Riccardi, 1991; Damborenea et al., 2013; 

Ferrari and Bessone, 2015). The latitudinal shift of the Neuquén Basin northwards 

(from 50°S to 25°S, Iglesia-Llanos et al., 2006, Iglesia Llanos and Prezzi, 2013) 

is consistent with the southward migration of bivalve distribution boundaries 

between the Austral and Tethyan Realms of ~700 km (8-10° latitude) observed 

along the Jurassic western Gondwana margin (Damborenea, 2002; Damborenea 

et al., 2013; Damborenea and Echevarría, 2015). This paleogeographic change 

culminated with the local diversification of habitats and increase of species 
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diversity (34-42°), which reached a peak during the Late Pliensbachian-Early 

Toarcian (Ballent and Whatley, 2000; Manceñido et al., 2002; Riccardi, 2008, 

2011; Damborenea and Echevarría, 2015). This latitudinal change is recorded in 

the Pliensbachian microflora of Early Jurassic marine deposits which reflect a rise 

of Classopollis pollen from 41.5% in the Sinemurian-Early Pliensbachian, to 91-

99% in the Late Pliensbachian (Volkheimer et al., 2008). Classopollis pollen is 

associated with dominant thermophilic conifer vegetation (Cheirolepidiacean 

gymnosperms of lowland vegetation) indicating increasing warmth and aridity 

with seasonally dry or semi-arid climate (Volkheimer et al., 2008). In the early 

Late Toarcian, the apparition of a new group of Araucariaceae (Callialasporites 

sp.), which required moist conditions, indicate change towards a more humid 

climate (Volkheimer et al. 1978, 2008). This period also recorded the occurrence 

of the TOAE with variable sedimentation rates, important storm activity and warm 

semi-arid climate which prevailed in the Andean Basin over the southwestern 

Gondwana (Al-Suwaidi et al., 2016; Fantasia et al., 2018). These conditions 

altered the deposition of characteristic organic black shale which typically 

document the TOAE in the northern hemisphere, where a warm and humid 

climate favoured the development of anoxia (Dera and Donnadieu, 2012). 

 

3.3.2 Late post-rift sag to Andean foreland evolution 

 

The sag phase lasted for ~80 Myr, from Middle Jurassic to Early Cretaceous 

(Fig. 3.8). By the Late Jurassic, the Andean magmatic arc was fully developed 

along the western Gondwana margin. Post-rift thermal subsidence was well-

established across the basin since the Aalenian, and promoted the development 

of a single broad extensional back-arc depocentre recorded by the Upper Cuyo 

Group and controlled by thermal subsidence and eustatic changes with local uplift 

(Gulisano and Gutiérrez Pleimling, 1995; Legarreta and Uliana, 1996; Vergani et 

al., 1995; Howell et al., 2005). From the Middle to Late Jurassic, pre-Andean 

deformation occurred in a regional context of back-arc thermal subsidence during 

deposition of the Upper Cuyo Group, affected by oblique transpressional 

reactivation of structures localized along the Huincul High (38-40°S) (Vergani et 

al., 1995; Gómez-Omil et al., 2002; Pángaro et al., 2006; Mosquera and Ramos, 

2006; Mpodozis and Ramos, 2008; Silvestro and Zubiri, 2008; García Morabito 
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et al., 2011; Naipauer et al., 2012). The SE-oriented oblique subduction motion 

induced a NNW-NW-oriented transpressive stress field that was accommodated 

along the ENE-WSW-oriented Huincul High. The high acted as a buttress, and 

promoted spatial partitioning of transpressional and transtensional deformation 

(dominant transpressional to the SE and compressional to the SW) (Mosquera 

and Ramos, 2006; Silvestro and Zubiri, 2008; Mpodozis and Ramos, 2008; 

Mosquera et al., 2011).  

 

 

Figure 3.8: Cross sections showing the change of subduction regime and foreland evolution 
evolution of the Neuquén Basin (Horton et al., 2016). 
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Early Jurassic (Early Toarcian) to Late Cretaceous deformation was 

accommodated diachronously from SE to NW, with partial reactivation of rift 

structures depending on the incidence angle of the transpressive stress field onto 

pre-existing rift faults, and resulted in limited pure inversion at the exception of 

WNW-ESE oriented rift faults (Pángaro et al., 2006; Silvestro and Zubiri, 2008). 

NE-SW,ENE-WSW, and E-W-oriented reverse faults, associated with growth of 

anticlinal and synclinal folds, formed to accommodate dextral or sinistral slip, with 

transcurrent reactivation of NW-SE-oriented rift faults or NNW-oriented pre-rift 

structures (Vergani, 2005; Pángaro et al., 2006; Cristallini et al., 2006; Gómez 

Omil et al., 2002; Silvestro and Zubiri, 2008). Transpressive and transcurrent 

tectonic activity along the Huincul High has been related to the development of 

Intra-Liassic and Intra-Toarcian angular discordances (Mosquera, 2002; Gómez 

Omil et al., 2002; Pángaro et al., 2006, 2009). 

Then a back-arc sag period was marked by local episodes of normal faulting 

interpreted to record a second rift stage driven by NW-oriented extension related 

to the opening of the South Atlantic (Vergani et al., 1995; Howell et al., 2005; 

Mpodozis and Ramos, 2008; Ramos, 2010). This period is recorded during the 

Late Jurassic by the Lotena Group (Callovian-Kimmeridgian) bounded by the 

Intra-Callovian and Intra-Malm unconformities, during the Late Jurassic-Early 

Cretaceous by the Mendoza Group (Kimmeridgian-Barremian), and during the 

late Early Cretaceous (Barremian-Albian) by the Bajada del Agrio Group.  

The changes in proto-Pacific subduction dynamics and far-field stress 

related to Gondwana breakup, and opening of the Atlantic Ocean, induced a 

complex post-rift evolution of intra-arc and back-arc basins into foreland basins 

that led to development of the Andean fold-and-thrust belt (Franzese et al., 2003; 

Ramos and Folguera, 2005; Ramos, 2010). During the late Early Cretaceous 

(Albian), a change from negative to positive rollback subduction regime induced 

a change from overall extension to compression. This change of subduction 

dynamics occurred due to a shift in convergence direction and/or velocity 

between the subdued Aluk plate beneath the western Gondwana margin and 

coeval breakup and opening of the South Atlantic Ocean (Ramos, 1999; 

Mosquera and Ramos, 2006; Mosquera et al., 2011). The transition from retro-

arc flexural subsidence to foreland basin evolution, and final disconnection of the 

Neuquén Basin from the Pacific Ocean, is recorded with deposition of the Late 

Cretaceous (Cenomanian-Maastrichtian) Neuquén Group bounded by a 
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Cenomian-Albian unconformity, and the Paleogene Malargüe Group (Vergani et 

al., 1995; Howell et al., 2005; García Morabito et al., 2011). The foreland stage 

records acceleration of convergence with westwards motion of South America 

and orthogonal reorientation of the subducted plate with a shallower dipping slab. 

This configuration promoted compression which culminated during the Neogene 

climax of the Andean orogeny (Ramos and Folguera, 2005; Ramos et al., 2011; 

Mosquera et al., 2011).  

 

3.4 Syn- to post-rift stratigraphy 

 

The Cuyo Group (Gulisano et al., 1984) comprises two second order 

depositional sequences separated by the Toarcian-Aalenian boundary: the Early 

Jurassic transgressive Lower Cuyo Group and Middle Jurassic regressive Upper 

Cuyo Group (Gulisano and Gutiérrez Pleimling, 1995; Vergani et al., 1995; 

Legarreta and Uliana, 1996; Burgess et al., 2000; Veiga et al., 2013). 

 

3.4.1 Lower Cuyo Group 

 

The Early Jurassic transgressive deposits of the Lower Cuyo Group 

corresponds mainly to late syn-rift shallow-marine mixed carbonate or mixed 

clastic, pyroclastic and epiclastic deposits, emplaced from Early to Late 

Pliensbachian. This includes respectively, the Chachil Fm. up to 50 m thick in 

exhumed depocentres, up to ~40 m thick in subsurface (Schiuma and Llambías, 

2008) and the Chacaico Fm., 30-190 m thick in exhumed depocentres, and up to 

~400 m thick in the subsurface (Pángaro et al., 2009). These shallow-marine 

deposits are overlain by deep-marine siliciclastic deposits emplaced from Late 

Pliensbachian to Aalenian (Lower Los Molles Fm., ~200-350 m thick in exhumed 

depocentres, Paim et al. (2008), and up to 500-1000 m thick in subsurface 

Gómez Omil et al. (2002)). The deposits of the Chachil and Chacaico Fm. are 

bounded at their base by the Intra-Liassic unconformity (hiatus from Sinemurian 

to Pliensbachian). Locally, it corresponds to a flooding surface that forms a 

sequence boundary for the Early-Late Pliensbachian depositional sequence C1 

(Gulisano et al., 1984; Schiuma et al., 2011). The Intra-Liasic and Intra-Toarcian 

discordance (hiatus from Sinemurian to Early Toarcian) can locally merge on 

topographic highs where the Chachil or Chacaico formations were not deposited. 
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In this case, the Los Molles Formation onlaps directly onto syn-rift volcanic 

Precuyano Cycle or basement deposits which can record up to 150 m of subaerial 

erosion (see onlap of Lower Los Molles Fm., Bermudez et al., 2002; Pángaro et 

al., 2002, 2006; Figs 3.9 and 3.10). The Los Molles Fm. can also be locally 

affected by small-scale compaction faults across rigid basement fault-block highs 

(Cristallini et al., 2009; Fig. 3.11). 

 

 

Figure 3.9: SW-NE seismic line in the Portezuelo Grande area modified after Pángaro et al. 
(2002). Seismic lines show the impact of the distribution of the Precuyano deposits on the 

sedimentation of the Lower Cuyo Group. Note the stratovolcano (1500 m high) that formed syn-
rift relief, which influenced the sedimentation up to Lower Toarcian and produced thickness 

variations in the Pliensbachian Lower Cuyo Group. The base of the Lower Cuyo Group 
(Sinemurian-Pliensbachian to Lower Toarcian) is interpreted as a late syn-rift succession that 

deposited (i) unconformably onlapping onto the erosional angular intra-Liasic discordance at the 
top of the Precuyano strata; or (ii) conformably where the Precuyo deposits lack due to non-

deposition or were not eroded (Pángaro et al., 2009). 
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Figure 3.10: (1) W-E seismic line in the Piedra Chenque area and (2) WSW-ENE seismic line in 
the Aguada Toledo area modified after Pángaro et al. (2006). Seismic lines flattened at the top 
of Lower Toarcian, and interpreted as sharp rift-sag transition. Line 1 shows along-strike effects 

of structural palaeohighs (Divisadero Fault anticline) and tectonic subsidence related to rift 
faults accommodated from Pliensbachian to Upper Toarcian by thickness variations and 

onlap/toplap in the Lower Cuyo Group. The seismic line (2) shows the hiatus of the 
Pliensbachian-Early Toarcian Lower Precuyo deposits, interpreted to be the result of short 

duration rifting in this sector. The Lower Toarcian strata onlap Precuyo deposits and 
sedimentation could interact up to the Upper Toarcian with palaeoreliefs formed by rotated 

blocks (Pángaro et al., 2006). 
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Figure 3.11: SW-NE seismic line in the Entre Lomas SW-NE seismic line in the Entre Lomas area 
modified after Cristallini et al. (2009). Interpreted and uninterpreted lines evidence normal faulting 
localized above basement highs and affecting in the Lower Cuyo Group deposits, Faults 
propagated parallel to NW-oriented Precuyo faults or propagated “en-échelon” above W-NW 
Precuyo faults. The normal faulting in the Lower Cuyo Group is interpreted as a result of 
differential compaction produced by abrupt thickness variations of the Precuyano Cycle syn-rift 
deposits (up to 2000m thickness change across 10 km distance; Entre Lomas-Estancia Vieja). 
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The equivalent unit to late syn-rift deposits of the Chachil Fm. in the north 

of the Neuquén Basin corresponds to the upper section of the Puesto Arraya Fm. 

which marks the base of the early post-rift since Early Sinemurian (Lanés et al., 

2008; Giambiagi and Martinez, 2008). In the Central Neuquén Basin, near the 

Cordillera del Viento, the Chachil Fm. hosts Algoma type BIF mineralisations 

enriched in sulphur and manganese (Zappettini et al., 2012). In the subsurface 

along the Huincul High to the south of the Neuquén Basin, the Chacaico Fm. 

deposited during Late Sinemurian-Early Pliensbachian, and records epiclastic 

and volcaniclastic sedimentation in shallow-marine environment (Pángaro et al., 

2009). Deposits of the Chacaico Fm. are also equivalent to the Cupen Mahuida 

Fm., which form subaqueous volcanogenic deposits emplaced from Late 

Pliensbachian to Early Toarcian in a depocentre of the Huincul High (Schiuma et 

al., 2011). The calc-alkaline composition of Precuyano Cycle deposits and Lower 

Cuyo Group, including the Chacaico Fm. and some volcaniclastic deposits of the 

Los Molles Fm., also record magmatic arc volcanism from Late Triassic to Early 

Jurassic (up to Early Toarcian) in the Cerro Bandera depocentre of the Huincul 

High (Bermudez et al., 2002). 

The Chacaico Fm. is equivalent to fossiliferous marine volcaniclastic 

deposits of the Primavera Fm. (50-400 m thick) exhumed in the Central Neuquén 

Basin. This succession comprises basalts, dacites, rhyolites, and reworked 

volcanic deposits, with a calc-alkaline composition, emplaced with subaerial to 

subaqueous volcanism during the Late Pliensbachian-Early Toarcian (Gulisano 

and Gutiérrez Pleimling, 1995; Llambías et al., 2007). In this area, the Precuyano 

Cycle and Primavera Fm. deposits have been interpreted as part of a Late 

Triassic to Early Jurassic magmatic arc, equivalent to subduction-accretion 

complexes developed contemporaneously in the southern Neuquén Basin (~ 

38°S) along the Coastal cordillera of Chile (Llambías et al., 2007). These 

deposits, located near Lonquimay, correspond to Late Pliensbachian-Early 

Toarcian Icalma Member of the Nacientes del Biobio Fm. They include tholeiitic 

to calc-alkaline basalts, turbidites including tuffs, breccias and cherts emplaced 

from subaerial to marine environment (50-100 m water depth) in an intra-arc 

extensional basin associated with calderas and subaqueous andesitic volcanoes 

(De la Cruz and Suárez, 1997).  
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3.4.2 Upper Cuyo Group 

 

The Middle Jurassic is characterized by the development of a post-rift 

regressive marine to continental system from Aalenian to Callovian (Fig. 3.3 and 

3.9). This system prograded from the southern border of the basin towards the 

northwest or towards the west into the central Neuquén Embayment, with 

deposition of the Upper Cuyo Group bounded at top by the intra-Callovian 

regional unconformity (155 Ma) (Dellapé et al., 1979; Gulisano et al., 1984). The 

progradational system includes Late Toarcian to Bajocian deep-marine 

siliciclastic slope to basinal deposits (Middle and Upper Los Molles Fm. up to 

~750 m thick), shallow-marine deltaic coastal deposits spanning the Bajocian 

(Lajas Fm. up to ~550 m thick) and fluvial continental deposits spanning the 

Bathonian (Challaco Fm.). These genetically-related systems, deposited during 

an eustatic sea-level fall, culminated with deposition of evaporate during the 

Callovian (Tabanos Fm.) (Gulisano and Gutiérrez Pleimling, 1995; Legarreta and 

Uliana, 1996; Zavala, 1996; Gómez Omil et al., 2002; Mutti et al., 2003; Martinez 

et al., 2008; Paim et al., 2008). Progradational sedimentation patterns in the south 

of the Neuquén Basin contrasts with the continuous transgressive sedimentation 

pattern that dominated in the northern Neuquén Basin. This contrasted 

sedimentation pattern might reflect the imbalance between subsidence, 

eustatism and sedimentation rate (Gulisano and Gutiérrez Pleimling, 1995), and 

appears to be a consequence of the effects of marine flooding across irregular 

inherited rift topography at the scale of the Neuquén Basin (Veiga et al., 2013). 

 

3.4.3 Early Jurassic stratigraphic scheme of this study 

 

The present study is focused on refining the stratigraphy of the first second 

order transgressive sequence defined at large-scale in previous studies: the 

Lower Cuyo Group (Gulisano and Gutiérrez Pleimling, 1995; Vergani et al., 1995; 

Legarreta and Uliana, 1996; Burgess et al., 2000) (Fig. 3.12).  Stratigraphy of the 

Early Jurassic Lower Cuyo Group is organized into a late syn-rift megasequence 

and an early post-rift megasequence, each subdivided into several sequences 

(J1.1, J1.2, J2.1, J2.2) it can be represented by a range of lithostratigraphic units 

(1, 2, 3 and 4). Assessing the lateral spatial and temporal changes of units which 
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can be recorded within a single sequence reflect the natural variability of 

depositional systems across the studied depocentres. 

The late syn-rift megasequence is represented by the J1.1 sequence 

spanning from Early to Late Pliensbachian. It includes Unit 1 and 2 corresponding 

either to an alluvial to shallow-marine mixed carbonate-clastic system or fan-

deltaic to deltaic system, equivalent to the Chachil Fm. and Chacaico Fm. in the 

literature. 

The early post-rift megasequence is represented by the J1.2 sequence 

spanning from Late Pliensbachian-Toarcian boundary to late Early Toarcian and 

the J2.1 sequence spanning from early Late Toarcian to Aalenian. It includes Unit 

3 and 4 corresponding to a deep-marine siliciclastic system, equivalent to the 

Lower Los Molles Fm. in the literature. The Unit 3 which corresponds to organic-

rich source rock mudstone associated with a maximum flooding event at the base 

of the Los Molles Fm. is equivalent to the “Lower Pelitic Member” and also records 

the Toarcian Oceanic Anoxic Event (TOAE) (Al-Suwaidi et al., 2016; Angelozzi 

and Pérez Panera, 2016). The Unit 4 which corresponds to the sand-rich part of 

the Lower Los Molles Fm. is equivalent to the “Upper Pelitic Member”. 
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Figure 3.12: Stratigraphic scheme of the Cuyo Group. The Lower Cuyo Group is detailed based 
on results presented in this study showing the different formations names, their respective units 
and their stratigraphic architecture across the study area. Age constrains from this study and the 
literature are shown, together with other stratigraphic schemes existing from the subsurface and 
outcrop studies. Note the long-lived effects of the inherited rift topography recorded in the Los 
Molles Formation and the different hypothesis for Late Toarcian-Aalenian onset of sand supply 
which cannot explain the deposition of sandstone since the late Early Toarcian in the study area. 
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3.5 Los Molles Fm. 

 

3.5.1 Early Jurassic Lower Los Molles Fm. 

 

The Lower Los Molles Fm. is commonly described as a thick package of 

deep-marine shales emplaced during rising and highstand sea-level (Gulisano 

and Gutiérrez Pleimling, 1995; Paim et al., 2008) (Fig. 3.12). Subsurface studies 

in the Huincul High area have described turbidite lobes in the Lower Los Molles 

Fm. corresponding to the “Pelitic Member” or “Lower Section” of the Los Molles 

Fm. (Cruz et al., 1999, 2002; Gómez Omil et al., 2002). The Lower 

(Pliensbachian-Early Toarcian) and Upper (Early Toarcian-Aalenian) Pelitic 

Members can be separated by an Intra-Toarcian angular discordance recognized 

in subsurface (Mosquera, 2002; Gómez Omil et al., 2002; Pángaro et al., 2009). 

Isolated sealed sandy reservoirs of dry gas and condensates are associated with 

the higher source rock potential (kerogen type II/III averaging 2 to 4-6% and up 

to 11% TOC) of the Lower Los Molles Fm., compared to the Middle and Upper 

Los Molles Fm. (Cruz et al., 1999, 2002; Gómez Omil et al., 2002; Pángaro et al., 

2006). 

The Lower Los Molles Fm. forms the Late Pliensbachian- early Late 

Toarcian depositional sequence C2 (Gulisano et al., 1984) or late Early-early Late 

Toarcian depositional sequence J1 (Paim et al., 2008). J1 and C2 correspond to 

a second order depositional sequence, which record a transgressive-regressive 

cycle associated with a major basin wide flooding event recognized in the Huincul 

High and Catán-Lil area, and in the northern Neuquén Basin. Only recently a 

seismic stratigraphic study highlighted its internal organization into five different 

depositional cycles in the eastern part of the Huincul High area (Brinkworth et al., 

2018) (Fig. 3.12). The cycle II (Early Toarcian) corresponds to deposits of a 

deltaic fringe (100-120 m thick) across a submarine ramp and the cycle III (late 

Early Toarcian) and IV (early Late Toarcian) both record deposition of the first 

thin clinoforms (50-70 m and up to 300 m thick, prograding 8-12 km/Ma) 

(Brinkworth et al., 2018). The cycle V (late Late Toarcian) and VI (Early-Middle 

Aalenian) deposited during a relative sea-level fall, record the formation of thicker 

and sigmoidal clinoforms (300-500 m thick, prograding 6-8 km/Ma) associated 

with deltas reaching a well-defined shelf-edge break (~300 m high). Therefore, in 

the easternmost part of the Huincul High area, the Lower Los Molles Fm. 
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developed with progradational-aggradational stacking of small deltas oriented to 

the NW-WSW, first with thin clinoforms across a ~15-20 km wide submarine ramp 

to intermediate ramp-talus (II-III). These evolved into thicker clinoforms across a 

well-defined shelf-slope-basin profile (V-VI) but with limited sediment bypass 

downslope, which resulted in the accumulation of fine-grained distal deposits 

(Brinkworth et al., 2018).  

Towards the west of the Huincul High area, the Lower Los Molles Fm. 

developed with progradation of narrow alluvial fans and deltaic fringes across a 

steeper platform-slope-basin profile, with bypass through multiple point sourced 

feeder conduits. This promoted the accumulation of turbidite lobes towards the 

NW-NNW (Sequence I-Pliensbachian-Early Toarcian) with a strong control of 

basement highs and growth faults and folds on the distribution of sand-rich 

depocentres (Gómez Omil et al., 2002; Pángaro et al., 2006, 2009) (Fig. 3.12). 

Since the Early Toarcian, progradation of fan deltas (Cutral-Co Member) 

(Sequence II) in relatively shallow-water (~20 m depth) formed sigmoidal bodies 

which onlap towards the NE onto the Sequence I and pass distally into mudstone 

of the Los Molles Fm. (Gómez Omil et al., 2002). These sigmoidal bodies, incised 

by NNW-oriented canyons, were associated with shelf breaks that nucleated onto 

rift fault borders (Gómez Omil et al., 2002; Pángaro et al., 2006, 2009). Increased 

subsidence and large influxes of clastic material in the southeast and western 

parts of the basin along the Huincul High are linked to transtensional and 

transpressional tectonics since the Late Toarcian (Gómez Omil et al., 2002; 

Pángaro et al., 2006, 2009; Silvestro and Zubiri, 2008; García Morabito et al., 

2011). Similar compressive or transtensive reactivation of W- and NNW-NW 

oriented normal faults bounding depocentres (Rahue and Piedra Santa Range) 

have been interpreted to control the confinement of Early Jurassic depocentres 

to the west in La Jardinera area (García Morabito, 2010) and as a trigger for the 

onset of sand supply (Pángaro et al., 2009; Naipauer et al., 2012; Pujols et al., 

2018) otherwise regarded as a consequence of a major eustatic sea-level fall 

(Paim et al., 2008) (Fig. 3.12). 
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3.5.2 Middle Jurassic Middle and Upper Los Molles 

 

In Gulisano et al. (1984), the Middle and Upper Los Molles Fm. and Lajas 

Fm. correspond to the depositional sequence C3, and the Challaco Fm. to the 

depositional sequence C4. In Paim et al. (2008), the Middle and Upper Los Molles 

Fm., together with the Lajas and the Challaco Fm., form a second order 

depositional sequence J2 (Fig. 3.12). The Middle and Upper Los Molles Fm., 

dominated by submarine lobes and channel-fills, have been extensively studied 

for their organization as large-scale clinoform (200-400 m, inclined 2-4°) 

deposited with relative sea-level fall (Verzi et al., 2005; Paim et al., 2008; Loss et 

al., 2018). In Paim et al. (2008), the Middle Los Molles Fm. is subdivided into third 

order depositional sequences. This includes a Late Toarcian-late Early Aalenian 

depositional sequence, J2.1, and late Early Aalenian-early Late Aalenian 

depositional sequence, J2.2.  

The Upper Los Molles Fm. forms the early Late Aalenian-Early Bajocian 

depositional sequence, J2.3. However, these time constraints were arbitrarily 

placed. A study of radiolarian fauna (Kochhann et al., 2011) has shown that the 

Toarcian-Aalenian boundary is recorded within the top J2.1 sequence of Paim et 

al. (2008). This implies that sand-rich deposits of the J2.1 sequence are in fact at 

least Late Toarcian (Fig. 3.12). The J2.2 and J2.3 sequences correspond to the 

JC4 sequence recognized in the Sierra Chacaico (Zavala, 1996; García et al., 

2006). The J2.1 sequence, which represents the first sandy deposits in the La 

Jardinera depocentre, is proposed by Paim et al. (2008) as an equivalent of the 

Cutral-Co Mb or sequence II (Early-Late Toarcian) of Gómez Omil et al. (2002). 

However, these authors instead associated their sequence III (Aalenian-Early 

Bajocian) to the sandy turbidite deposits of La Jardinera (Fig. 3.12).  

In the subsurface, deposition of the Middle and Upper Los Molles Fm. from 

Aalenian to Bathonian is recorded by the cycles VII to CIX, which formed an 

extensive progradational system that progressively infilled accommodation in the 

basin (Brinkworth et al., 2018; Loss et al., 2018) (Fig. 3.12). Cycle VII records an 

important palaeogeographic change recognized both in the eastern and western 

Huincul High area, with an abrupt basinward shift of the shoreline driven by a 

major relative sea-level fall and “lowstand” sequence. This event is recorded by 

development of progradational clinoforms (400 m thick, prograding 6-8 km/Ma), 

including shelf edge deltas, slope channel-fills and turbidite lobes. Large channel 
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systems (up to 100 m thick) developed preferentially along inherited rift structures 

across the slope promoting significant sediment bypass and turbidite lobe 

deposition in the basin, interpreted to form the first “lowstand“ deposits in the 

westernmost exhumed depocentres along the Huincul High (Gulisano and 

Gutiérrez Pleimling, 1995; Paim et al., 2008; Loss et al., 2018). 
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Chapter 4 Evolution from syn-rift carbonates to early post-rift 

deep-marine intraslope lobes: the role of rift basin physiography 

on sedimentation patterns 

 

4.2 Introduction 

 

The syn- to post-rift transition is associated with a change from active 

crustal stretching, typically accommodated by normal faulting and rapid 

mechanical subsidence, to broad thermal subsidence and decay of normal 

faulting with cooling of the crust (McKenzie, 1978; Ziegler and Cloetingh, 2004). 

During the post-rift, the majority of rift-related faults are deactivated. Depending 

on inherited rift topography, thermal subsidence, and eustatic and climatic 

changes, the rift may receive immediate early post-rift, or delayed late post-rift 

extrabasinal sediment (Ravnås and Steel, 1998; Lien, 2005; Soares et al., 2012; 

Yu et al., 2013; Jarsve et al., 2014; Henstra et al., 2016; Balázs et al., 2017).  

Detailed documentation of syn- to post-rift transition stratigraphy is needed 

to evaluate controls such as inherited rift physiography, change in sediment 

source area, and to advance existing conceptual models for rift basin-fills. 

However, the syn- to post-rift transition is difficult to resolve in the subsurface, 

with low resolution seismic reflection data and sparse well coverage (Kyrkjebø et 

al., 2004; Lien, 2005; Zachariah et al., 2009; López-Gamundí and Barragan, 

2012; Jarsve et al., 2014; Lohr and Underhill, 2015). Consequently, little is known 

about the architecture, facies distribution, development of bed-scale 

heterogeneity, and termination style against inherited rift topography of early 

post-rift deep-marine sand-rich systems that have been documented in the 

subsurface (Argent et al., 2000; Martinsen et al., 2005; Milton-Worssell et al., 

2006; Moscardelli et al., 2013). Outcrop-based studies of ancient deep-water rift 

basin-fills can provide key information on subseismic stratigraphic architecture 

and facies distributions during the syn- to post-rift transition, but often lack 

detailed descriptions of early post-rift sand-rich systems (Surlyk and Korstgård, 

2013; Yu et al., 2013; D’Elia et al., 2015; Hadlari et al., 2016).  

The aim is to investigate a rare example of an exhumed marine rift 

depocentre, the Chachil Graben, southwestern Neuquén Basin, west-central 
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Argentina. The graben-fill records the transition from syn-rift carbonate to post-

rift siliciclastic sedimentation during the Early Jurassic evolution of the Neuquén 

Basin in a back-arc setting. The main objectives are to (i) analyze the stratigraphic 

architecture of the basin-fill; (ii) evaluate the effects of local and regional controls 

on sedimentation during the syn- to post-rift transition in the Chachil Graben; and 

(iii) assess the impact of seabed topography on flow behaviour and the character 

of lobes during the early post-rift. 

 

 

Figure 4.1: A- Map of the Neuquén Basin showing the location of the Chachil Graben detailed in fig. 4.1-

B and the Pliensbachian-Toarcian palaeogeographic setting (subsurface palaeoshelf southern border of 
the Neuquén Basin and depocentres after Gómez Omil et al., 2002 and García Morabito et al., 2011). B- 
Map of the Chachil and Catán-Lil Graben (including structures after Leanza, 1990; Franzese et al., 2006; 
Muravchik et al., 2014) showing location of the panorama in fig. 4.1-C and detailed geological map of the 

study area in fig. 4.2-A. C- Panorama from the horst border to the adjacent hangingwall of the Chachil 
Graben showing structures and spatial distribution of the Lapa, Chachil and Los Molles formations. 
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4.3 Geological setting and stratigraphy 

 

The Neuquén Basin, Argentina (36°S-40°S) formed along the 

southwestern convergent margin of the Gondwana-South American plate, being 

bound by the Andean volcanic arc to the west, the Sierra Pintada belt to the 

northeast, and the North Patagonian Massif to the southeast (Fig. 4.1-A). The 

Neuquén Basin underwent intracontinental rifting from Late Triassic to Early 

Jurassic, followed by subduction of the proto-Pacific plate and thermal 

subsidence from Early Jurassic to Early Cretaceous, and subduction-driven 

foreland evolution characterized the Late Cretaceous-Cenozoic period (Vergani 

et al., 1995; Legarreta and Uliana, 1996; Franzese and Spalletti, 2001; Howell et 

al., 2005).  

The southwestern Gondwana margin evolved with gravitational collapse 

of a Late Palaeozoic orogen and widespread magmatism, which played a critical 

role in thermo-mechanical weakening of the lower crust and lithosphere, which 

accommodated Late Triassic - Early Jurassic extension with opening of 

intracontinental volcanic rift basins (Vergani et al., 1995; Legarreta and Uliana, 

1996; Franzese and Spalletti, 2001). Extensional faulting with rapid mechanical 

and volcano-tectonic subsidence (cf. Muravchik et al., 2011) controlled the 

accumulation of continental volcano-sedimentary successions (Precuyano Cycle; 

Gulisano et al., 1984). These Late Triassic - Early Jurassic (Norian - Sinemurian) 

syn-rift continental successions include volcanic effusive, pyroclastic and 

epiclastic material interbedded with alluvial-fluvial and lacustrine carbonate 

deposits (Franzese et al., 2006; Muravchik et al., 2011, 2014; D’Elia et al., 2015). 

Isolated syn-rift depocentres are bound by major pre-rift basement fault-blocks 

including Late Devonian - Early Carboniferous metasedimentary rocks of the 

Piedra Santa Fm. (Franzese, 1995), Late Carboniferous - Early Permian calco-

alkaline plutons of the Chachil Plutonic Complex (Leanza, 1990) and Late 

Permian - Early Triassic volcanic terranes of the Choiyoi Group (Llambías et al., 

2003). 

Transgression of volcanic rift depocentres occurred during the Early 

Pliensbachian in the Neuquén Basin with flooding from the Panthalassic Ocean 

and formation of an epeiric sea along the southwestern Gondwana margin 

(Damborenea et al., 2013; Leanza et al., 2013). The Early Pliensbachian also 
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recorded the onset of subduction with negative trench rollback, which controlled 

extension and back-arc subsidence of the Neuquén Basin bounded to the west 

by the Early Andean volcanic island arc (Franzese and Spalletti, 2001; Mpodozis 

and Ramos, 2008). Initial development of Early Jurassic marine depocentres was 

strongly influenced by the rift topography and diachronous syn- to post-rift 

transition until the Middle Jurassic (Aalenian) (Legarreta and Uliana, 1996; 

Burgess et al., 2000; Gómez Omil et al., 2002; Veiga et al., 2013). Since Middle 

Jurassic marine depocentres merged together into a single broad back-arc 

depocentre controlled by post-rift thermal subsidence (Gulisano and Gutiérrez-

Pleimling, 1995; Vergani et al., 1995; Legarreta and Uliana, 1996; Franzese and 

Spalletti, 2001). The Early to Middle Jurassic evolution of the Neuquén Basin is 

recorded by the Cuyo Group (Gulisano et al., 1984). It comprises two 2nd order 

depositional sequences separated by the Toarcian-Aalenian boundary: the Early 

Jurassic Lower Cuyo Group and Middle Jurassic Upper Cuyo Group (Gulisano 

and Gutiérrez Pleimling, 1995; Vergani et al., 1995; Legarreta and Uliana, 1996; 

Burgess et al., 2000). The present chapter is primarily focused on the Early 

Jurassic transgressive deposits of the Lower Cuyo Group to investigate the local 

syn- to post-rift transition record in the Chachil Graben (not a basin-scale event, 

cf. Soares et al., 2012) and effects of inherited rift topography on early post-rift 

sedimentation.  

 

4.4 Study area and data 

 

Chachil Graben 

 

The study area corresponds to the Chachil Graben located in the 

southwestern Neuquén Basin which forms the exhumed western part of the 

Huincul High (Fig. 4.1-A), characterized by a series of NNW-SSE to NW-SE 

trending half-grabens and grabens inverted and uplifted during the Andean 

compression (Vergani et al., 1995; Franzese et al., 2006; García Morabito et al., 

2011; Muravchik et al., 2011, 2014). The Huincul High is an ENE-WSW oriented 

intraplate structure which formed the southern shelf-slope margin of the Neuquén 

Basin during the Early Jurassic, along which marine rift depocentres (see Fig. 
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4.1-A) with turbidite fan systems developed across a complex rift topography (e.g. 

Gómez Omil et al., 2002; Pángaro et al., 2009). 
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Figure 4.2: Synthetic stratigraphic column representing thickness of lithostratigraphic units, 
changes in sediment composition and biota, source contribution and interpretations for tectonic 
stages. Numerical Early Jurassic ages from Ogg et al. (2016); (NC) nannofossil chronozones 
(Ballent et al., 2011); Standard European Ammonite Biozone (EAB) and Andean Ammonite 

Biozone (AAB) numbers (Riccardi, 2008); age at base of the Chachil Fm. (186.3 ± 0.4 Ma from 
Leanza et al., 2013 and modified after Armella et al., 2016); negative δ13C excursion and 

TOAE from Al-Suwaidi et al. (2016) in the Tenuicostatum-Dactylioceras hoelderi zones (AAB 
15-16) equivalent to the Tenuicostatum-Spinatum EAB and constrained in NJ6 nannofossil 

chronozone from Angelozzi and Pérez Panera (2016); climate from Volkheimer et al. (2008); 
coastal onlap curve (Legarreta and Uliana, 1996); eustatic sea-level (Haq, 2018). 

 

The Chachil Graben is a NNW-SSE trending depocentre about 10 km wide 

and at least 15 km long, although post-rift cover and Cenozoic volcanic rocks 

overlying syn-rift deposits hamper the clear definition of its eastern margin (Fig. 

4.1-B). Its northern margin was controlled by the Chihuido Bayo fault system, 

which strikes NE-SW and dips to the SE. The Chihuido Bayo fault system extends 

for 15 km SE from the Cerro Chachil, where it bounds the 5 km wide southern 

horst border of the Chachil Graben (Figs 4.1-B and C). The Lapa Formation, 

which represents the syn-rift infill of the Precuyano Cycle in the study area (Fig. 

4.2), is <400 m thick along the southern margin of the Chachil Graben and 

thickens up to 2 km northwards in the graben centre (Franzese et al., 2006). 

Thickness changes in the Lapa Fm. were controlled by NNW-SSE and minor 

NE/NNE-SW/SSW striking faults, respectively parallel and oblique to the 

Chihuido Bayo fault system along the southern horst border of the graben (Fig. 

4.1-B). NW-SE and NNW-SSE striking, NE or SW dipping late syn-rift faults 

subdivide the immediate hangingwall of the graben-horst into several intra-basin 

highs (Morro del Aguila, Puesto Alfaro, El Luchador and Paine Milla fault-blocks) 

and intervening lows (Mirador de Chachil and Picún Leufú fault-blocks) (Figs 4.3-

A and B). 

 

Data and methodology 

 

A >10 km long NE-SW striking exposure belt into the main hangingwall of 

the Chachil graben-horst border permits the detailed analysis of sedimentology 

and stratigraphic architecture, with a focus on stratal geometries, stacking 

patterns, facies and thickness changes across rift structures. The dataset 

comprises detailed geological field mapping (Fig. 4.3) using Global Positioning 

System (GPS) referencing, Digital Terrain Model (DTM) and Unmanned Aerial 
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Vehicle (UAV) surveys, 12 logged vertical sections (1:25 scale) with regular 

testing of HCl reaction for carbonate rock composition, 114 strike and dip bedding 

readings, and 165 palaeocurrent measurements. Bedding measurements were 

separated into three main geographic zones (Fig. 4.3-A) and by tectono-

sedimentary unit (Fig. 4.4).  

 

 

Figure 4.3: A- Detailed map of the Chachil Graben showing the relationship between structures 
and tectono-sedimentary units of the Chachil and Los Molles formations. B- Cross sections (not 

restored) indicated on the map with location of structures and locality names. 
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Figure 4.4: Table of the calculated average structural dip and dip direction of mean bedding 
planes for each tectono-sedimentary unit in each zone realized with Stereonet software. Zone 

SW includes sections 1-2-3-4, Zone Central includes sections 5-6-7 and Zone NE includes 
sections 8-9-10. Stereonet diagrams show the mean bedding values for each unit (colours in 
stereoplots correspond to colours of units in the table), the associated average dip direction 

vector (bold circle), and all the other dip direction vectors measured (circles). 

 

Results from sections 11 and 12 were not included here given the paucity 

of data compared to other sections. Mean bedding orientations were calculated 

for each unit from all measurements taken in a given zone (Appendix 1 and 2), to 

constrain an average tectonic dip, and dip direction, for each unit in each zone 

(Fig. 4.4) to help identify dip discordances and subtle unconformities. 

Palaeocurrent measures (Fig. 4.5) were primarily collected from sole marks 

including grooves and flute casts, ripples, and dune-scale cross-bedding, and 

were plotted in rose diagrams to reconstruct the palaeoflow pathways with 

bedding restored using stereonet software. The presented maps and cross 

sections are shown across the actual structural and topographic configuration 

(i.e. no back-stripping). 
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Figure 4.5: Correlation panel (~10 km long transect indicated in fig. 4.3-A), showing 
relationships between units along the main hangingwall of the graben-horst border, average 

discordance angles (see fig. 4.4) and palaeocurrent measurements. Each rose diagram 
presents the detail of sole marks, ripples and dune-scale cross bedding current directions, each 
corresponding to a different colour indicated in the key. Note that the detailed architecture of the 

Lapa Fm. is not represented and that vertical offset on faults are approximate. Orientation of 
sections is located on map fig. 4.3.  
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The identification of marker beds used for stratigraphic correlation were 

chosen in Unit 4 (Fig. 4.5) as it deposited across a less complex seabed 

topography compared to other units and consisted of extensive sandstone 

packages that could be walked out for several kilometres. Physical correlation of 

sandstone packages and injectites between logs was also constrained with UAV 

photo panels. 

 

4.5 Stratigraphy and facies associations 

 

In the study area, the Lower Cuyo Group is represented by the Chachil Fm. 

(Weaver, 1942) and Los Molles Fm. (Weaver 1931) (Fig. 4.2). Detailed 

sedimentological analyses allowed the identification of 25 sedimentary facies 

(Table 4.1) grouped into 5 different facies associations. The Chachil Fm. 

represents a carbonate system (FA1, FA2, FA3) and the Lower Los Molles Fm. 

represents a deep-water slope system (FA4, FA5) including intraslope lobes for 

which subfacies associations have been detailed (FA5.1, FA5.2, FA5.3) (Fig. 

4.6). The Chachil Fm. spans the late Early-early Late Pliensbachian based on 

ammonites of the Davoei European Ammonite Biozone (EAB) (Austromorphites 

behrendseni of Andean Ammonite Biozone (AAB number 12)) (Riccardi, 2008), 

bivalve species of the Radulonectites sosneadensis Assemblage Zone (Riccardi 

et al., 2011) and U-Pb age of 186.3 ± 0.4 Ma (Leanza et al., 2013; Armella et al., 

2016) (Fig. 4.2). The presence of Posidonotis cancellata (Leanza) in the lower 

part of Unit 3 indicates onset of deposition of the Lower Los Molles Fm. prior to 

the latest Pliensbachian, based on the extent of the Posidonotis cancellata 

Assemblage Zone spanning the latest Spinatum and Tenuicostatum EAB (Fig. 

4.2) (cf. Riccardi et al., 2011). 
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Figure 4.6: Representative photographs of facies associations. A- FA1: Thin- to medium-

bedded silicicified carbonate platform successions. B- FA3: Thin- to medium-bedded mud-rich 
mixed carbonate-clastic successions of distal periplatform. C- FA2: Medium-bedded mixed 

carbonate-clastic successions of proximal periplatform. D- Transition from FA4 to FA5.1. FA4: 
Very thin- to thin-bedded calcareous mudstone-dominated successions of siliciclastic-starved 

basin. E- FA5.1: Thin-bedded muddy heterolithic successions of distal lobe fringe with 
significant scouring. F- FA5.2: Thin- to medium-bedded sandy heterolithic successions of 

proximal lobe fringe. G- FA5.3: Medium- to thick-bedded sandstone-dominated successions of 
dirty lobe axis. H-FA5.3: Medium- to thick-bedded sandstone-dominated successions of cleaner 

lobe axis. 
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Table 4.1: Descriptive facies table providing interpretation for depositional processes. Note 
abbreviations: Cobble (Co), Pebble (Pb), Granule (Gr), Very coarse (VCs) Coarse (Cs) Medium 

(Ms) Fine (Fs) very fine (VFs) sandstone, Mudstone (Mds), very poorly sorted (VPS), Poorly 
sorted (PS), Moderately sorted (MS). Volcanics (vg), quartz (qutz), K-feldspar (K-Fd).  
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Table 4.1. (continue) 
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Table 4.1. (continue) 
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FA1: Carbonate platform 

 

Description 

 

FA1 consists of well-stratified, thin- to medium-bedded silicified carbonate 

successions (10-40 m thick) (Fig. 4.6-A) including laterally extensive thin tuff 

layers (1-10 cm thick). FA1 onlaps onto volcano-sedimentary syn-rift deposits 

(Lapa Fm.) of fault-block highs and passes laterally into FA2 in fault-block lows 

(Figs 4.5 and 4.7).  

 

Thin to medium beds (10-35 cm thick) of micritic tuffaceous carbonate (F1a) 

have a wackestone texture and wispy, undulose tuffaceous laminations (0.5-1 cm 

thick). The faunal content in FA1 is dominated by semi-infaunal and epifaunal 

bivalves (Kolymonectes weaveri (Damborenea), Radulonectites sosneadoensis 

(Weaver), Agerchlamys wunschae (Marwick), Weyla bodenbenderi 

(Behrendsen), Weyla alata angustecostata (R. Philippi), Chlamys textoria 

(Schlotheim), Antiquilima, Plicatula rapa (Bayle and Coquand), Entolium and 

Pinna sp.) (see Leanza, 1990).  

 

Bivalve shells (5-10 cm diameter) are either articulated and in life position 

or gently disarticulated. Shells are associated with well-preserved circular crinoid 

ossicles (3-5 mm diameter) or articulated stems (2 cm long) and rare siliceous 

sponge spicules concentrated in micritic levels. Beds are tabular with irregular, 

crenulated sharp base and top with some vertical burrows (Trypanites). Medium 

beds (50-70 cm thick) of fossiliferous carbonate (F1b) have a packstone texture 

massive or with rare undulose parallel laminations (0.4-2 cm thick). Disarticulated 

bivalve shells in broken fragments (5 cm long) and coarse sand-sized reworked 

volcaniclastic grains (quartz, K-feldspar) are scattered throughout beds (Fig. 

4.8A). Beds are tabular with a wavy sharp base and top, locally showing 

Pascichnia grazing traces (Helminthopsis) at the contact with marlstone (F3c) of 

FA3. 
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Figure 4.7: Detailed correlation panel showing the internal architecture and spatial facies 
relationships within Units 1 and 2 (Chachil Fm.); facies are detailed in Table 4.1. 
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Figure 4.8: Representative photographs of facies. A- Fossiliferous packstone (F1b) bearing 
reworked volcaniclastic coarse sand-sized grains (K-feldspar) and abundant large broken 

bivalve shell fragments scattered throughout beds. B- Calciturbidite (F2b) characterized by their 
crude normal grading and a high proportion of bioclasts (crinoids (Cri), bryozoans (Bry), thick-

walled disarticulated shells) with a few reworked volcaniclastic subrounded pebbles. C- 
Bioclastic packstone (F3a) with reworked volcaniclastic fine to medium sand-sized grains 
(quartz, K-feldspar) and small disarticulated to broken shells of bivalve and brachiopod 

concentrated in wavy normally graded grain-rich layers. D- Massive calcareous mudstone (F4a) 
bearing thin tuff layers, early diagenetic carbonate and pyrite concretions. E- Calcareous 

bioclastic sandstone (F4c) normally graded with bioclastic base. F- Silty mudstone (F5.1a) 
interbedded with sandy siltstone current-ripples (F5.1b) locally presenting an opposing 

palaeocurrent direction. 

 

Interpretation 

 

In the micritic tuffaceous carbonate facies (F1a), the preservation of 

bivalves in life position or weakly disarticulated indicates no or very little post-

mortem transport and together with the small diameter articulated crinoid stems 

indicates in-situ deposition under stable low hydraulic conditions. The abundance 

and species of large-sized bivalves indicate deposition in a shallow, well-

oxygenated and low-energy subtidal environment (cf. Damborenea and 

Manceñido, 1979, 1992). Resedimented volcaniclastic grains together with 

parautochthonous broken or disarticulated shells in fossiliferous carbonate (F1b) 

suggest a wave-induced physical reworking with limited transport. This facies 

association is interpreted to represent warm-temperate carbonate platform 

deposits in a low-energy and well-oxygenated subtidal environment periodically 

influenced by ash-falls. Biodetrital carbonate mud accumulated in-situ with 

skeletal accretion, bioerosion and weak mechanical reworking of organisms that 

formed a micritic substrate onto fault-block highs which remained near photic 

depths (<30-50 m) in normal marine waters. Primary volcanic material mixed with 

carbonate deposits indicates simultaneous explosive volcanic eruptions from the 

western magmatic arc which is postulated to have intermittently restricted the 

photic zone and depleted the biota (Armella et al., 2016). The lack of early 

cementation and binding of these warm-temperate carbonate deposits favoured 

their reworking and resedimentation into allochemical biodetrital carbonate 

material into fault-block lows (e.g. Halfar et al., 2004). 
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FA2: Proximal periplatform 

 

Description 

 

FA2 forms weakly stratified, medium-bedded mixed carbonate-clastic 

successions (5-28 m thick) (Fig. 4.6-C) restricted to fault-block lows with onlap 

onto volcano-sedimentary syn-rift deposits (Lapa Fm.) and pass laterally into FA1 

onto fault-block highs (Figs 4.5 and 4.7). FA2 includes i) polygenic pebbly 

conglomerate (F2a), ii) normally graded coarse- to fine-grained calcareous 

sandstone (F2b) and iii) massive calcarenite (F2c). Pebbly conglomerate (F2a) 

forms medium to thick beds (20-90 cm thick), with a very poorly sorted, very 

coarse- to medium-grained sandy matrix bearing abundant granule- to gravel-

sized (0.5-25 cm long) and angular to subrounded clasts (reworked pyroclastic 

and effusive volcanics, quartz, mudstone). Pebbly conglomerate (F2a) also bear 

a few pieces of wood (up to 15 cm), disarticulated small bivalve and rhynchonellid 

shells (2-5 cm long) and pentagonal or circular crinoid ossicles (5 mm diameter). 

Individual beds are tabular with low erosional relief at base (<10 cm deep) and 

are locally clast-supported with sharp planar top. Medium to thick beds (50-70 cm 

thick) of moderately sorted, crudely normally or inversely graded calcareous 

sandstone (F2b) comprise bioclasts, reworked volcaniclastic coarse sand-sized 

grains (quartz, K-feldspar) and subrounded clasts (1.5 cm long). Bioclasts include 

thick-walled fragmented shells (2-5 cm long), crinoid ossicles (5 mm diameter), 

fragments of discoidal robust solitary coral (<5 cm diameter) (Montlivaltia, see 

Gulisano and Gutiérrez Pleimling, 1995) and bryozoan (3 cm diameter) (Fig. 

4.8B). Beds can show low-angle cross-laminations and have a broad lenticular to 

lens-shape (<8 m wide) with erosional base (up to 15 cm deep) and sharp planar 

top, locally amalgamated. Medium beds (30-50 cm thick) of wel sorted calcarenite 

(F2c) have a grainstone texture, with well-rounded, medium- to fine-grained 

skeletal and quartz grains and thin-shelled bivalves (1-2 cm long). Beds have a 

sharp planar base and top which locally present some vertical burrows (Skolithos, 

Ophiomorpha). 
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Interpretation 

 

The pebbly conglomerates (F2a) present a very poor sorting of immature 

reworked volcaniclastic clasts admixed with bioclasts, which indicate a weak 

gravitational sorting and reworking across short transport distance prior to 

deposition by subaqueous non-cohesive hyperconcentrated density flows 

(Drzewiecki and Simó, 2002; Payros and Pujalte, 2008). Calciturbidites (F2b) 

contain a high proportion of fragmented bioclasts in respect to reworked 

volcaniclastic material and suggest transport and deposition by high-density 

turbidity currents, which produced local normal or inverse grading and traction 

structures (cf. Braga et al., 2001; Payros and Pujalte, 2008). Calcarenites (F2c) 

reflect intense hydraulic bioclastic grain reworking prior to deposition by 

concentrated grain flows (Drzewiecki and Simó, 2002; Halfar et al., 2004). The 

bioclastic material in this facies association must have been sourced from erosion 

and reworking of the shallow-water peripheral carbonate platform (FA1). The lack 

of biodetrital carbonate mud together with mechanical reworking of bioclastic and 

volcaniclastic material indicate accumulation of proximal periplatform deposits 

under moderate-energy, below the fair-weather wave base  

 

FA3: Distal periplatform 

 

Description 

 

FA3 corresponds to poorly stratified, medium- to thin-bedded mud-rich 

mixed carbonate-clastic successions (10-35 m thick) (Fig. 4.6-B) including 

laterally extensive tuff layers (5-10 cm). FA3 unconformably overlies FA1, with 

thickening into fault-block lows and thinning across fault-block highs (Fig. 4.7). 

Thin to medium beds (15-50 cm thick) of bioclastic carbonate (F3a) have a 

packstone texture, with fine to medium sand-sized reworked volcaniclastic grains 

(quartz, K-feldspar) and small disarticulated shells of bivalves and brachiopods. 

Broken shells can be concentrated in wavy laminated normally graded grain-rich 

layers (1-2 cm thick) (Fig. 4.8C). Individual beds have a tabular geometry with 

undulated sharp base and top that can show vertical burrows (Cylindrichnus) and 

can be trough cross-bedded. The medium beds (30-50 cm thick) of spiculitic 

carbonate (F3b) have a wackestone texture containing well-preserved monaxon 
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and tetraxon siliceous sponge spicules (1-4 mm long) and a few silt- to fine sand-

sized reworked volcaniclastic grains (quartz, K-feldspar). Pumice lapillis (1-2 mm 

diameter) and subrounded organic intraclasts (2-5 cm long) are also found locally. 

Beds have an irregular tabular or lens-shaped geometry with sharp base and top, 

locally bioturbated (Chondrites bollensis, Trichichnus). Locally, spiculitic 

carbonate beds are interbedded with medium beds (10-60 cm thick) of thinly 

laminated (0.5-5 cm thick) marlstone (F3c), including sponge spicules, tuffaceous 

and finely comminuted shell hash layers (0.5 cm thick) and rare large ammonites 

(15 cm diameter).  

 

Interpretation 

 

Normally graded grainy bioclastic layers and rare trough-cross-bedding of 

bioclastic carbonate (F3a) record episodic storm-wave reworking, which is 

consistent with oxygenated bottom conditions indicated by the presence of 

Cylindrichnus (Ekdale and Harding, 2015). In contrast, Chondrite and Trichichnus 

traces in spiculitic carbonate (F3b) and marlstone (F3c) record a decrease of 

oxygen levels at the sediment-water interface. In these facies, the well-preserved 

siliceous sponge megascleres indicate limited transport and support a 

parautochthonous origin, from a harder carbonate substrate below the storm-

wave base. The lower biota diversity (compared to FA1 and FA2) dominated by 

allochthonous to parautochthonous disarticulated bivalves, brachiopods and 

siliceous sponges characterizing FA3 supports deposition at greater water depths 

than FA1 and FA2. Allochemical bioclastic and biodetrital carbonate mud indicate 

deposition by low-density flows with storm-wave reworking of unconsolidated 

carbonate platform substrate (FA1) and dilution of frequent volcanic influxes as 

indicated by pumices and tuffaceous material (D’Atri et al., 1999; Halfar et al., 

2004). This facies association represents distal periplatform deposits emplaced 

under moderate- to low-energy conditions, near or below the storm-wave base, 

with progressive bathymetric deepening and reduction of oxygen conditions. 
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FA4: Siliciclastic-starved lower slope 

 

Description 

 

FA4 forms poorly stratified, very thin- to thin-bedded calcareous mudstone-

dominated successions (20-120 m thick), which unconformably overlie FA3 and 

is overlain by FA5 (Fig. 4.6-D), locally affected by significant thickness changes 

across rift structures (up to 100 m across few kilometres, see Fig. 4.5). 

Calcareous mudstone (F4a) is massive, with well-preserved carbonaceous 

matter and mainly composed of dominantly silt- and clay-size in-situ pelagic and 

allochemical biodetrital carbonate material. Very thin- to thin-bedding is 

monotonous (1-10 and up to 20 cm thick), commonly disrupted by oblate 

calcareous concretions (<15 cm long) and thin tuff layers (1-5 cm thick). Pyrite is 

present as discontinuous layers (<0.5 cm thick) parallel to bedding or elliptical 

oblong concretions (5-8 cm long) (Fig. 4.8D). Faunal content is represented by 

small ammonites (2-5 cm diameter) and articulated or disarticulated bivalve shells 

(0.5-2 cm long) distributed along bedding planes, as shell pavements 

(Posidonotis cancellata (Leanza)). Some thin- to medium-beds (5-40 cm thick) of 

massive to graded calcareous mud-rich siltstone (F4b) and rare graded medium- 

to fine-grained bioclastic calcareous sandstone (F4c) structured with low-angle 

planar and current-ripple lamination can be intercalated within mudstone. 

Bioclastic sandstone beds contain abundant crushed skeletal material and have 

a sharp planar or erosional base with tool marks and sharp top (Fig. 4.8E). 

Bioturbation in calcareous mud-rich siltstone (F4b) include small forms of 

Chondrite intricatus and Phycosiphon traces.  

 

Interpretation 

 

The thin-bedding, and absence of sedimentary structures, in calcareous 

mudstone suggest deposition from a biogenic source (McCave, 1984) with 

intermittent clastic dilution and ash fall. Clastic dilution by low-density flows 

resulted from storm-induced offshore transport (Schieber, 2016) and deposition 

of allochemical bioclastic calcareous sandstone and siltstone in the lower part of 

FA4 could have favoured episodic oxygen influxes. Bioclastic sandstone and 

siltstone beds record inputs of rare low-density bioclastic-rich turbidity currents 
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sourced with storm-wave reworking of the drowned carbonate platform (Bouma, 

1962; Lowe, 1982). The high organic matter content of type II in the Lower Los 

Molles Fm. (TOC between 2 and 11%) supports a mixture of marine and 

terrestrial components (cf. Al-Suwaidi et al., 2016). Preservation of organic matter 

was favoured under low-oxygen and reducing conditions, which promoted pyrite 

mineralization and pre-compaction seabed diagenetic processes that formed 

calcareous concretions, potentially associated with marine flooding and very low 

sedimentation rates (Taylor et al., 1995). The concentration of juvenile low-

oxygen tolerant bivalve specimens (Posidonotis cancellata (Leanza), cf. 

Damborenea et al., 2013) in pavements record episodes of high mortality events 

and/or condensed surfaces with very low sedimentation rates (Fig. 4.2). Little to 

no post-mortem bottom current winnowing of bivalves and scarcity of silty and 

sandy beds support deposition below the storm-wave base, consistent with 

estimations of palaeobathymetry at base of the Los Molles Fm. between 200 and 

400 m (cf. Gómez Omil et al., 2002; Gómez-Pérez et al., 2003). 

This facies association records deposition of mixed pelagic and fine-grained 

carbonate material derived from storm winnowing of the drowned carbonate 

platforms, redeposited in a sand-starved basinal environment, under low-energy 

and poorly oxygenated conditions, below the storm-wave base. 

 

FA5.1: Intraslope lobes- Distal lobe fringe 

 

Description 

 

FA5.1 forms well-stratified, thin-bedded muddy heterolithic successions (5-

30 m thick) (Fig. 4.6-E) that transitionally overlie FA4 (Fig. 4.6-D). Laterally, FA5.1 

can transition and interfinger with packages of FA5.2 and FA5.3. FA5.1 (Fig. 4.9) 

is dominated by interbedded massive to subtly graded mudstone (F5.1a) and pin-

striped laminated mudstone (F5.1b) (1-20 cm thick) including ammonites and 

small bivalve moulds (indet.) parallel to bedding planes. Pin-striped laminated 

mudstone (F5.1b) contains parallel to low-angle planar discontinuous laminations 

of fine sand- and silt-bearing mudstone (0.2-2 cm thick), providing a streaky 

bedding pattern with sharp grain-size breaks.  
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Thin to medium beds (5-20 cm thick) of normally graded sandy siltstone 

(F5.1c) and fine- to very fine-grained sandstone (F5.1d) intercalated in mudstone 

(F5.1a-b) form heterolithic packages (up to 5 m thick). Graded sandy siltstone 

(F5.1c) shows low-angle planar laminations and starved current-ripples, which 

locally record opposing palaeoflow directions (Fig. 4.8F). The sandstone beds 

(F5.1d) are normally graded, with planar or wavy laminations and current-ripples 

that can be enriched in carbonaceous material. Beds have sharp planar or 

irregular base and gradational top, which can show Chondrite traces. FA5.1 

comprises distinctively greenish-yellowish weathered, well-cemented massive 

medium- or fine-grained discordant sandstone (F5.1e) (Figs 4.9 and 4.10).  
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Figure 4.9: Detailed correlation panel showing the internal architecture and spatial facies 

relationships within Unit 4 (Lower Los Molles Fm.). 
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Figure 4.10: Panoramic view from UAV photograph (cars on the road for scale) showing the 

onlap limit of the Lower Los Molles Fm. (Unit 3) onto the Chachil Fm. (Units 1 and 2), the 

inferred location of the compaction hinge and distribution of lobe and injectites within Unit 4. 

Respective lateral and frontal pinchouts are indicated. A- View of slumped mudstone and 

sandstone interval (1.6 m thick and kilometre-scale). B- View of the stepped sills injectited 

across the compaction hinge that pinchout across <2 km. Colours for lobes and facies 

distribution are detailed in fig. 4.9. 

 

These mainly form laterally extensive (5-8 km) subhorizontal bodies (<0.5 

to 1.5 m and up to 3.8 m thick) that cross-cut the surrounding mudstone 

stratigraphy at low-angle (<15°), locally associated with rare thin subvertical 

bodies (up to 30 cm thick, <1 m wide) (Figs 4.10 and 4.11-A). Discordant 
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sandstone beds can show planar trains of subspheroidal vugs (0.2-1 cm 

diameter), typically calcite-filled, restricted to the upper part of beds. Beds have 

sharp planar or stepped base and top and convex-down pinchout terminations. 

Subangular mudstone clasts (2-5 cm long) and linear wave crests (up to 1-2 m 

long, 0.-0.4 m wide, 0.1-0.15 m relief and 0.5-1.0 m spacing) oriented NE-SW are 

locally present on bed top surfaces. Subhorizontal bodies contain large angular 

rafts of heterolithic strata (10-50 cm and up to >1 m across) found “in-situ” with 

their, long axis parallel to and concordant with bedding of the host stratigraphy. 

 

Figure 4.11: (next page) Representative photographs of facies associations. A- Injected 

sandstone (F5.1e) showing a single injected sill body cutting through mudstone. B- Chaotic 

muddy sandstone (F5.2e) bearing deformed mudstone and sandstone clasts and heterolithic rafts 

distributed in a patchy medium- to fine-grained matrix enriched in mud and clast-depleted at top. 

Bed is scouring and rafting into a pinch and swell, massive, mud-poor sandstone with locally low 

amplitude dune-scale bedforms developed at top (F5.2a). C- Chaotic sandy mudstone (F5.2f) 

characterized by a starry night-like matrix with plant material, bearing floating large mudstone, 

siltstone and sandstone clasts with well-preserved shallow-marine pecten and ostreid shells. D- 

Massive mud- and clast-poor sandstone division (F5.2a) scoured (0.4 m deep and 3 m wide) and 

filled by homogeneous massive silty mudstone (F5.2d). E- Massive sandstone (F5.3a) stacked 

into cross-bedded set of scour fill (up to 5 m long and 1.5-2 m thick). F- Medium-grained 

sandstone with anisotropic hummock-like bedform showing an asymmetric rounded ripple with 

low-angle foresets (<5°) draped by sinusoidal parallel laminae sets (F5.3c). G- Amalgamated 

granular sandstone (F5.3b) grading upwards into medium-grained sandstone with undulose 

laminations (F5.3c). Armoured mudstone clast with quartz pebbles and surrounding broken 

bioclasts locally found in granular sandstone (F5.3b) is shown in the frame to the left. 
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Interpretation 

 

Massive to subtly graded mudstone (F5.1a) suggests deposition from 

waning fine-grained dilute muddy turbidity currents (Stow and Bowen, 1980). The 

pin-striped laminated mudstone (F5.1b) was deposited by clay-laden, turbulence-

modulated low-density flows, decelerating with possible shear sorting and mixing 

that formed thin clay- and silt- to sand-bearing stripes (cf. ‘streaky bedding’ of 

Baas et al., 2016). Graded structured siltstone and sandstone beds (F5.1c, 

F5.1d) were deposited with tractional reworking beneath intermediate- to low-

density turbidity currents allowing differential particle settling (Lowe, 1982; Best 

and Bridge, 1992). Sparse bioturbation and dissolution of calcitic shells preserved 

as moulds indicates deposition under poorly oxygenated conditions; as in the oxic 

zone, organic matter decomposes producing CO2 and this in turn forms carbonic 

acid that can lead to dissolution of shells (Aller et al., 1982). The discordant 

massive sandstone bodies (F5.1e) are interpreted as clastic injectites including 

minor and thin dykes associated with laterally extensive thick sills (Hurst et al., 

2011). The lack of any grading or sedimentary structure, conspicuous 

cementation and planar trains of subspheroidal vugs suggest polyphased fluid 

circulation in these sandbodies. Lack of clay matrix, sharp clast margins and “in 

situ” rafts, indicate the incorporation of lithified host strata during injection of slow 

moving laminar flows and in other locations, large subangular mudstone clasts 

mantling top surfaces of sills might result from entrainment and abrasion by 

erosive injecting flows (Cobain et al., 2015). Muddy heterolithic successions 

(FA5.1) with narrow grain-size range, beds with gradational top and tabular 

extensive geometry for 100s m, lack of amalgamation and sparse bioturbation 

suggest deposition in a distal lobe fringe setting (Mutti, 1977; Prélat and Hodgson, 

2013). 
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FA5.2: Intraslope lobes- Frontal lobe fringe 

 

Description 

 

FA5.2 comprises thin- to medium-bedded sandy heterolithic successions 

(<5-25 m thick) (Fig. 4.6-F) that extend for up to 5 kilometres and transitional with 

FA5.1, vertically and laterally (Fig. 4.9). Beds are rarely amalgamated, and 

include very poorly sorted sandy mudstone and muddy sandstone facies (i.e. bed 

divisions) with variable mud matrix and clast content. Bed geometry is irregular, 

with common lateral facies changes, abrupt thinning with pinchout across <100 

m (Figs 4.9 and 4.10). The distinct divisions in individual beds of FA5.2 suggest 

that these are hybrid event beds (HEBs; sensu Haughton et al., 2009) and 3 main 

bed types are identified (Fig. 4.12).  

Type 1 HEBs (F5.2a-F5.2e or F5.2f -F5.2c or F5.1d) (1-7 m thick) comprise 

a thick (decimetres to metres thick) chaotic muddy sandstone division (F5.2e or 

F5.2 f) locally either encased between two thinner (10s cm thick) sandier divisions 

(F5.2a at base and F5.2c or F5.1d at top), or with only the top division present. 

Typically, the basal sandstone (F5.2a) (30-80 cm thick) is mud-poor, coarse- to 

medium-grained, and massive with subrounded to subangular mudstone clasts 

(0.5-8 cm long). The upper part of the sandstone division can show low amplitude 

dune-scale mud-rich bedforms, and is overlain by a chaotic muddy sandstone 

(F5.2e) or chaotic sandy mudstone (F5.2f) division (Fig. 4.12). The basal sandy 

division has an irregular pinch and swell top surface often scoured and filled by 

homogeneous massive silty mudstone (F5.2d) (10-60 cm thick) (Fig. 4.11-D). 

Basal sandy divisions (F5.2a) typically pinchout downdip across a few 100s m 

before the overlying chaotic muddy sandstone pinchout (Fig. 4.11-B and 4.12). 
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Figure 4.12: Different HEB bed types identified in the intraslope lobes, with some examples in 
photos. The facies in brackets are only locally present. HEB type 1 comprises a basal massive 

mud-poor sandstone with low amplitude dune-scale mud-rich bedforms at top (F5.2a) and pinch 
and swell geometry, sharply overlain and locally scoured by a chaotic muddy sandstone (F5.2e) 
or sandy mudstone (F5.2f). This is in turn overlain by a clast-rich muddy sandstone (F5.2c) with 

sheared basal contact, or just draped by structured fine-grained sandstone with planar wavy 
laminations and current ripples (F5.1d). HEB type 2 comprises a basal massive to laminated 

mud-poor sandstone (F5.2a), grading into banded muddy sandstone (F5.2b) (that can be 
absent) and/or a clast-rich muddy sandstone (F5.2c) capped by massive silty mudstone (F5.2d). 

HEB type 3 comprises a massive mud-poor sandstone (F5.2a) grading into a well-developed 
banded muddy sandstone (F5.2b) capped by massive silty mudstone (F5.2d). 

 

The chaotic muddy sandstone (F5.2e) (4-6 m thick) is characterized by a 

very poorly sorted, patchy medium- to fine-grained sand-rich matrix bearing 

outsized granules and coarse sand grains, abundant mudchips, with erosional 

base and mounded top (Fig. 4.11-B). The matrix supports pebble- to cobble-sized 

mudstone and sandstone clasts (5-30 cm long), deformed sand-streaks (30 cm 

long) and heterolithic rafts (up to 80 cm long), with mud-rich and clast-poor top. 

The chaotic sandy mudstone division (F5.2f) (0.8-5 m thick) has a very poorly 

sorted sandy mudstone matrix containing outsized coarse sand grains, plant 

material and pebble-sized subangular to subrounded mudstone, siltstone and 

sandstone clasts (5-50 cm long), locally including well-preserved shallow-marine 
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pecten and ostreid shells (Fig. 4.11-C). The matrix content in these beds 

increases upwards where the largest clasts are segregated, floating in the matrix 

(Fig. 4.11-C). Locally, the chaotic division (F5.2e or F5.2f) is overlain by a 

normally graded sandstone with planar wavy laminations and/or ripples (F5.1d) 

(<0.2 m thick), or by a clast-rich muddy sandstone (F5.2c) (20-60 cm thick) with 

irregular bed geometry and a sheared basal contact (shown in Fig. 4.6-F). 

Type 2 HEBs (F5.2a-F5.2b-F5.2c-F5.2d) (0.6-1 m thick) comprise a lower, 

clast- and mud-poor massive sandstone division (F5.2a) (5-50 cm) and an upper 

poorly sorted argillaceous division of clast-rich muddy sandstone (F5.2c) (20-40 

cm thick) (Fig. 4.12). The clast-rich muddy sandstone (F5.2c) consists of poorly 

sorted chaotic medium-grained sandstone bearing abundant deformed mudstone 

clasts (2-25 cm long) and mudchips throughout bed. Locally, the upper poorly 

sorted argillaceous division (F5.2c) overlies a fine-grained banded sandstone 

division (F5.2b) (<15 cm thick). This banded division is characterized by 

alternating discontinuous light mud-poor and dark mud-rich bands (1-5 mm up to 

2 cm thick) with mudchips, and capped by massive silty mudstone (F5.2d) (5-10 

cm thick). 

Type 3 HEBs (F5.2a-F5.2b-F5.2d) (15-50 cm thick) comprise a clast- and 

mud-poor massive sandstone division (F5.2a) (5-40 cm thick) passing upwards 

into a finer-grained banded sandstone division (F5.2b) (5-20 cm thick) overlain 

by massive silty mudstone (F5.2d) (few cm thick) (Fig. 4.12).  

 

Interpretation 

 

 Type 1 HEBs (Fig. 4.12) are interpreted to reflect deposition from a thick 

forerunning debris-flow associated with development of a basal concentrated 

density flow as a result of shear mixing at flow-interfaces (with surrounding 

seawater) during a single flow event (Amy et al., 2005). In these HEBs, the 

chaotic muddy sandstone (F5.2e) and sandy mudstone (F5.2f) were likely 

deposited by intermediate to high yield strength debris-flows, with significant 

compacted substrate entrainment (Dakin et al., 2013; Talling, 2013). Entrainment 

of ambient water might have diluted the basal part of the flow enabling substrate 

erosion and/or hydroplaning (Marr et al., 2001). Fluid mixing at the base of the 

debris-flow would have played a significant role in decreasing the debris-flow 

strength below the point it could form a rigid plug flow, resulting in a basal sandy 
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layer that behaved as a turbulence-modulated clay-laden transitional flow (F5.2a) 

(Baas et al., 2011). In such a transitional flow, shearing and breaking of clay 

particles were likely sufficiently high and cohesive bed yield strength sufficiently 

low, to locally enable bedform development (F5.2a) with propagation of low 

amplitude bedwaves at the interface with the basal turbulence-modulated 

transitional flow (Baas et al., 2016). The development of the basal sandy layer, 

and thus the occurrence of bedforms, as well as variations in the nature of the 

overlying bed, might be strongly related to lateral changes in debris-flow strength 

and the irregular erosional behaviour of the debris-flow itself (Talling, 2013). The 

upper sandy divisions (F5.1d or F5.2c) overlying the debrite might have formed 

through dilution and shear mixing at the top and front of the debris-flows (Talling 

et al., 2002; Mohrig and Marr, 2003; Felix et al., 2009). This led either to formation 

of a turbulent cloud that evolved into a low-density turbidity current (F5.1d), or to 

increased concentration as a result of mixing with the underlying debris-flow 

muddy material and evolution into a transient low to intermediate yield strength 

sandy debris-flow (F5.2c).  

In contrast, HEBs 2 and 3, which have similar facies division thickness <1 

m (Fig. 4.12), thin across short distances (10s m) and might result from flow 

bulking through entrainment of clayey substrate, deceleration and flow 

transformation of an initial high-density turbidity current (Talling et al., 2004; Baas 

et al., 2011; Kane et al., 2017). These HEBs are characterized by banded 

divisions (F5.2b) deposited in the upper-stage plane bed regime (Baas et al., 

2016), well-developed in Type 2 HEBs, and poorly to not developed in Type 3 

HEBs at the expense of a debritic division emplaced by a low to intermediate yield 

strength sandy debris-flow (F5.2c) (Talling et al., 2012). In Type 2 HEBs, the 

banded division grades upwards into massive silty mudstone (F5.2d) that 

suggests consolidation after deposition of cohesive silty fluid mud flows (Baas et 

al., 2011).  

Sandy heterolithic successions (FA5.2) show complex spatial facies 

relationships and bed thickness changes associated with common metre-scale 

mud-filled scours and hybrid event bed development that record changes in 

hydrodynamic conditions with variable erosion, deposition and flow 

transformation, supporting a frontal lobe fringe sub-environment interpretation 

(Kane et al., 2017; Spychala et al., 2017). 
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FA5.3: Intraslope lobes- Lobe axis 

 

Description 

 

FA5.3 forms crudely to well-stratified, medium- to thick-bedded sandstone-

dominated successions (5-12 m thick) (Figs 4.6-G and H), which transitionally 

overlie or pass downdip into FA5.2 (Fig. 4.9). Amalgamated contacts with up to 

20 cm relief marked by abrupt grain-size breaks and mudstone clasts are 

common within tabular extensive sandstone packages (1.5-5 m thick), and bed 

tops can be intensely burrowed by Planolites and Chondrites.  

Massive to crudely stratified sandstones (F5.3a) form medium to thick beds 

(0.5 to 1.2 m thick), which are poorly sorted, mud-poor, crudely graded, coarse- 

to medium-grained and locally structured with diffuse planar parallel or wavy 

laminations (1-3 cm thick) at top. Beds are often amalgamated, with sharp planar 

or erosional base (grooves), bearing elongated subrounded lithic granule- to 

pebble-sized clasts (1-6 cm long). When not amalgamated, beds grade normally 

to structured medium-grained sandstone (F5.3c) and/or structured fine-grained 

sandstone (F5.1d). Massive to crudely stratified sandstone beds (F5.3a) are 

locally stacked into cross-bedded sets (dipping up to 10°, up to 5 m long and 1.5-

2 m thick) (Fig. 4.11-E). Granular sandstone (F5.3b) forms thin to medium beds 

(5-50 cm thick), which are very poorly sorted, very coarse- to coarse-grained and 

bear abundant subangular granule-sized grains (0.2-0.4 cm) and pebble-size 

mudstone and siltstone clasts (5-10 cm long) providing an inverse or normal 

coarse-tail grading to beds. Some mudstone clasts armoured with quartz pebbles 

and bioclasts including belemnites, bivalves and planktonic foraminifera 

(Globorotalia?) can be found in these beds (Fig. 4.11-G). Beds have erosional 

base and sharp top, or locally grade upwards into structured medium-grained 

sandstone (F5.3c). Structured medium-grained sandstone (F5.3c) form thin to 

medium beds (5-30 cm thick), moderately sorted and normally graded, with non-

erosive anisotropic swaley-like low-angle trough-cross-laminations and isotropic 

(10-25 cm high and wavelengths of few decimetres) or anisotropic hummock-like 

bedforms. Anisotropic hummock-like bedforms form asymmetric rounded ripples 

with convex-up lee and stoss side, low-angle foresets (<5°) and are draped by 

sinusoidal parallel laminae sets (Fig. 4.11-F). F5.3c beds have sharp base and 
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wavy top overlain by graded structured sandy siltstones (F5.1c) or structured fine-

grained sandstone (F5.1d).  

 

Interpretation 

 

Massive to crudely stratified coarse- to medium-grained sandstones (F5.3a) 

were deposited with high sediment fallout rates that could suppress tractional 

processes in turbulence-modulated clay-laden transitional flows (Baas et al., 

2011). Lower fallout rates and collapse of high-concentration near-bed laminar 

sheared layers enabled the formation of diffuse laminae (Sumner et al., 2008). 

Massive granular sandstone with normal or inverse coarse-tail grading (F5.3b) 

suggests excessive near bed concentration and deposition by high-density to 

hyperconcentrated density flows (Lowe, 1982; Mulder and Alexander, 2001). 

Structured medium-grained sandstone (F5.3c) was deposited with traction-and-

fallout beneath stratified high-density combined flows, with high sediment fallout 

rates enabling bedform aggradation in the upper-stage plane bed stability field 

(Tinterri, 2011). Anisotropic hummock-like structures formed with dominant 

unidirectional flow component whereas isotropic hummock structures suggest a 

dominant oscillatory combined flow component (Tinterri, 2011). Given deposition 

below the storm-wave base, the oscillatory flow component could not originate 

with surface waves. Alternatively, these bedforms are interpreted to form from 

interactions of reflected internal wave trains with the near-bed unidirectional flow 

component, due to flow rebound and deflection against a confining slope (Tinterri, 

2011). The effects of confinement and basin configuration are discussed in the 

section Unit 4.  

Medium- to thick-bedded sandstone-dominated successions (FA5.3) 

comprise amalgamated sandy packages (1.5-5 m thick, ~1-2 kilometres across) 

of continuous tabular beds with limited basal erosion (<0.6 m deep) and locally 

narrow and shallow incisional features interpreted as scour-fills (1.5-2 m deep, 

~5 m long), suggesting a lobe axis sub-environment (Etienne et al., 2012; Prélat 

and Hodgson, 2013). The increase in bioturbation intensity compared with FA5.1, 

marked by burrowed bed base, suggests deposition in a moderately- to well-

oxygenated environment, consistent with frequent extrabasinal siliciclastic 

influxes. 
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4.6 Synthesis of depositional systems and architecture of tectono-

sedimentary units 

 

Genetic facies relationships described in the previous section and stratal 

relationships across structures allowed four tectono-sedimentary units to be 

defined (Figs 4.3 and 4.5). Units 1 and 2 belong to the Chachil Fm. and Units 3 

and 4 correspond to the Lower Los Molles Fm. Mean bedding dip-directions have 

been calculated for each unit in the three different geographic zones (Fig. 4.4) in 

order to show the differences in bed orientation and dip between the different 

units and structural domains. In each zone, there is a stratigraphic decrease in 

stratal dip angle, and from a multidirectional dip-direction pattern to a dominant 

E-SE dip azimuth trend (Fig. 4.4). Analysis of spatial facies distribution, 

palaeocurrents, thickness changes, stratal bounding surfaces and associated 

angular relationships between units are used to decipher the late syn-rift to early 

post-rift evolution of sedimentary systems during the Early Jurassic (Figs 4.2 and 

4.13). The terms “proximal” and “distal” refer to the position relative to the graben-

horst boundary. 

 

Unit 1 

 

Unit 1 includes carbonate platform deposits (FA1) that onlap onto fault-block 

highs with an angular unconformity between ~4° and 14°, and proximal 

periplatform deposits (FA2) that onlap onto fault-block lows with an angular 

erosional unconformity between ~11° and 15° (Fig. 4.5).  

 

Carbonate platform deposits (FA1) have moderate stratal dip angles (~16 

to 25°) with E-SE dip direction on the Morro del Aguila (Zone SW) and Puesto 

Alfaro (Zone Central) fault-block highs and SW dip direction on the El Luchador 

fault-block (Zone NE) (Fig. 4.4). Proximal periplatform deposits (FA2) show 

moderate stratal dip angles (~20°) with E dip direction in the Mirador de Chachil 

trough (Zone SW) and higher dip angles (~33°) with S dip direction in the Picún 

Leufú trough (Zone Central) (Fig. 4.4).  

 

The fault-block carbonate platforms (FA1) are detached from the basin 

margin (sensu Bosence, 2005) (Figs 4.7 and 4.13-A), exhibit subtle internal 
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growth stratal patterns with onlap and pinchout towards the crest of rotated fault-

block highs that compartmentalize the immediate hangingwall downdip of the 

graben-horst border.The Morro del Aguila and the Paine Milla fault-blocks host 

extensive carbonate platforms (2-5 km length and width, up to 40 m thick) 

dominated by micritic tuffaceous carbonate (F1a). The platform nucleated on the 

Puesto Alfaro fault-block highs, and is dominated by fossiliferous laminated 

carbonate (F1b) (Fig. 4.7). The fauna of Unit 1 records the flourishing of a 

suspension feeder-dominated carbonate-secreting benthos including subtidal to 

intertidal encrusters (scleractinian corals, bryozoans, crinoids) and shelly 

biocalcifiers (bivalves, brachiopods) which insured productivity of the warm-

temperate carbonate system (cf. Flügel, 2004). Onto the graben-horst border, a 

tide-influenced inner carbonate platform with tidal flats and subtidal ponds 

developed and recorded shallowing-upward cycles with progradation of intertidal 

and supratidal deposits onto subtidal deposits (Armella et al., 2016). Carbonate 

sedimentation on the graben-horst border was strongly affected by ash-fall and 

episodic subaerial exposure indicated by oxide coated surfaces, with 

Glossifungites ichnofacies representing firmground suites (Armella et al., 2016). 

Nonetheless, subaerial exposure does not seem to have affected fault-block 

highs in the graben. Therefore, a combination of subaerial degradation on the 

horst border and enhanced current erosion of fault-block highs might have 

controlled extensive reworking of the poorly consolidated carbonate platform 

deposits (FA1) and volcano-sedimentary substrate into proximal periplatform 

deposits (FA2). 
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Figure 4.13: Palaeogeographic evolution of the Chachil Graben illustrated in schematic cross 
sections (not restored) showing changes of depositional setting, facies distribution and inferred 

fault-block motion during deposition of the units (see the precise timing, fig. 4.2). Section 
numbers refer to spatial location on the map shown in fig. 4.3-A.  
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Mixed carbonate-clastic proximal periplatform deposits (FA2) accumulated 

in the Mirador de Chachil and Picún Leufú troughs with onlap onto volcano-

sedimentary syn-rift deposits (Lapa Fm.) and pinchout towards intervening fault-

block highs (Figs 4.7 and 4.13-A). The polymict composition of pebbly 

conglomerates (F2a), dominated by brecciated reworked volcaniclastic material, 

suggests deposition by hyperconcentrated density flows that originated from 

small-scale failures triggered by fault-block tilting and destabilization of primary 

volcanic deposits (Lapa Fm.) (Fig. 4.13-A). Similar deposits interpreted as basal 

conglomerates of the Chachil Fm. have been recognized in subsurface in the 

southeast of the Neuquén Basin, and are interpreted as evidence for subaerial 

exposure and degradation of the Precuyano Cycle deposits (Schiuma and 

Llambías, 2008). Calciturbidite deposits (F2b) can be compared to carbonate 

platform-derived calciclastic aprons lacking internal organization and with local 

development of basal lags in small channel-fills (Braga et al., 2001; Payros and 

Pujalte, 2008). The stratigraphic increase in proportion and sorting of grainy 

allochemical carbonate material recorded throughout FA2 might reflect the 

decreased availability of the volcano-sedimentary syn-rift substrate for reworking 

due to progressive onlap in fault-block lows.  

SSE-oriented palaeocurrents (Fig. 4.5), stratal fanning of proximal 

periplatform deposits (FA2) in the Mirador de Chachil trough (5 to 25 m thick 

across 3-4 km) towards the Morro del Aguila fault-block high, and relative sea-

level fall and subaerial exposure of the graben-horst border, suggest active 

faulting and southeastwards tilt of the Mirador de Chachil fault-block low. Facies 

distribution, depositional geometries and variability of stratal dip azimuths across 

structures reflect active fault-block rotation during deposition of Unit 1 and support 

its late syn-rift development (Cross and Bosence, 2008; Dorobek, 2008).  

 

Unit 2 

 

Unit 2 corresponds to mud-rich mixed carbonate-clastic distal periplatform 

deposits (FA3) that form wedge-shaped packages in fault-block lows, thin drapes 

across fault-block highs, and onlap onto Unit 1 with an angular unconformity 

between ~3° and 10° (Fig. 4.5). In the Mirador de Chachil proximal trough (Zone 

SW) and Picún Leufú distal trough (Zone Central), moderate stratal dip angles 

(~18 to 32°) and consistent E-SE dip direction of Unit 2 contrast with higher dip 
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angles (~62°) of deformed strata with NE dip direction across the El Luchador 

fault-block (Zone NE) (Fig. 4.4).  

Bioclastic carbonate (F3a) deposited in the Mirador de Chachil proximal 

trough shows thinning (20 to 12 m thick across 3-4 km) and onlap onto 

calciturbidite (F2b) towards the Puesto Alfaro fault-block high (Figs 4.5 and 4.7). 

These deposits are overlain by interbedded spiculitic carbonate and marlstone 

(F3b-c) that thin (15 to 5 m thick) towards the Puesto Alfaro fault-block high. 

Bioclastic carbonate (F3a) also thins (18 to 8 m thick across <2 km) from the El 

Luchador fault-block high towards the Picún Leufú trough (Figs 4.7 and 4.13-B). 

Overlying interbedded spiculitic carbonate and marlstone (F3b-c) thin (10 to 5 m 

thick) from the Picún Leufú trough towards the El Luchador fault-block high (Figs 

4.7 and 4.13-B). These deposits present Chondrite and Trichichnus traces, which 

record a decrease of oxygen levels at the sediment-water interface. On the Morro 

del Aguila, Puesto Alfaro and Paine Milla fault-block highs, bioclastic and 

spiculitic carbonate (F3a-b) are absent, and carbonate platform deposits (F1a-b) 

are draped by marlstone (F3c) (5-10 m thick) (Figs 4.7 and 4.13-B). This contact 

is marked by Pascichnia grazing traces at the top of carbonate platform deposits 

representing a condensed surface onto fault-block highs due to sedimentation 

under poorly oxygenated and relatively deep bottom water conditions (Ekdale 

and Mason, 1988). A similar situation is observed on the horst border of the 

graben where the carbonate platform deposits are overlain by marlstone (e.g. 

Armella et al., 2016). 

The stratigraphic deepening recorded by Unit 2 provides strong evidence 

for fault-controlled subsidence given that tectonically induced relative sea-level 

changes could outpace the low amplitude and rates of eustatic rise during Early 

Jurassic greenhouse time (cf. Ravnås and Steel, 1998). Bathymetric deepening 

promoted rising of the storm-wave base to the level of the most elevated fault-

block highs bounding the graben. This promoted extensive reworking of 

unconsolidated carbonate platforms (FA1) redeposited in fault-block lows as 

allochemical fine biodetrital carbonate material (FA3) (e.g. Halfar et al., 2004). 

The thinning- and fining-upward trend of Unit 2 deposits in the Mirador de Chachil 

and Picún Leufú troughs and thickening towards the Morro del Aguila and Puesto 

Alfaro fault-block highs dominated by condensed sedimentation support syn-

depositional relative sea-level rise and differential subsidence (Fig. 4.13-B). The 

tectonic differential subsidence pattern suggests an increased displacement 
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along the graben-horst border fault and localized normal faulting in the graben 

with formation of the El Luchador fault-block high (Fig. 4.13-B). 

Tectonic subsidence and relative sea-level rise outpaced carbonate 

sedimentation rates and controlled retrogradation of the carbonate system. 

Drowning of the carbonate system culminated with establishment of a deep-

marine environment and reduction of oxygen recorded near the top of Unit 2 at 

depocentre-scale, from the horst border to the interior of the Chachil graben. The 

deterioration of chemical and physical conditions with tectonically-induced 

relative sea-level rise contributed to drowning of the carbonate factory across the 

entire depocentre undergoing continuous subsidence (e.g. Santantonio, 1994; 

Ruiz-Ortiz et al., 2004; Navarro et al., 2012). 

 

Unit 3 

 

Unit 3 forms a calcareous mudstone-dominated succession (FA4) which 

overlies Unit 2 locally with an angular discordance between ~3° to 9° at the 

graben margins. Dip angles are moderate (~16° to 25°) with general SE dip 

direction in the Mirador de Chachil proximal trough (Zone SW) and Picún Leufú 

distal trough (Zone Central), contrasting with higher dip angles (~57°) measured 

in the deformed strata of the El Luchador fault-block (Zone NE) with some E-SE 

dip direction (Fig. 4.4).  

The base of Unit 3 infills the intrabasinal topography inherited at the top of 

Unit 2 burying the Puesto Alfaro fault-block highs, and therefore records a change 

of basin geometry. This is supported by the thinning of Unit 3 (<20 m thick) to the 

NE across the El Luchador and Paine Milla fault-block highs and to the SW across 

the Morro del Aguila, and by the thickening (70 to 120 m thick) from the Mirador 

de Chachil to Picún Leufú trough (Fig. 4.5). The deformed steeply dipping strata 

of Unit 3 near the El Luchador fault-block (Zone NE) is associated with abrupt 

mudstone thickening (up to 100 m offset of compacted strata) across less than 2 

km from the Paine Milla platform towards the adjacent Picún Leufú trough (Figs 

4.5 and 4.13-C). This thickness change occurred across NW-SE striking and SW 

dipping rift faults involved in the formation of the El Luchador fault-block (Fig. 

4.13-B). The potential process that caused small-scale deformation recorded in 

Unit 3 is discussed.  
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The occurrence of Posidonotis cancellata (Leanza) shell mold pavements 

in the lower part of Los Molles Fm. has been reported in TOC-rich mudstone of 

another marine rift depocentre, located 20 km southeast of the Chachil Graben 

(Al-Suwaidi et al., 2016). Al-Suwaidi et al. (2016) report negative carbon isotope 

excursions associated with the TOAE during the late Tenuicostatum-early 

Dactylioceras Hoelderi Andean Ammonite Biozone (AAB) (Fig. 4.2). The TOAE 

might be recorded in Unit 3, which spans the latest Pliensbachian-Early Toarcian 

in the Chachil Graben, marked by a reduction of benthic fauna diversity recorded 

from Unit 2 to Unit 3 (Fig. 4.2) and variable sedimentation rates related to 

important storm activity under a warm semi-arid climate (cf. Volkheimer et al., 

2008). Similar conditions prevailed over southwestern Gondwana and altered the 

deposition of organic black shales which documents the TOAE in the northern 

hemisphere where a warm and humid climate favoured the development of 

anoxia (Dera and Donnadieu, 2012; Fantasia et al., 2018). The stratigraphic 

evolution from carbonate to terrigenous mudstone recorded at the top of Unit 3 

(Fig. 4.6-D) marks the transition to Unit 4 and indicates an increase of fluvio-

deltaic runoff which could be related to climatic change towards more humid 

conditions from the early Late Toarcian (cf. Volkheimer et al., 2008).  

 

Unit 4 

 

Unit 4 represents a submarine lobe complex (sensu Prélat et al., 2009) 

whose base is transitional with, or sub-concordant to, Unit 3 except around the 

El Luchador fault-block (Zone NE), where it shows an angular discordance 

between ~<1-8° (up to 36° onto deformed strata) onto Unit 3. Dip angles of Unit 

4 are moderate (~16° to 21°) with consistent E-SE dip direction (Fig. 4.4). Unit 4 

shows similar thickness changes as the underlying Unit 3 across structures, 

thickening (150-170 m thick) from the Mirador de Chachil to the Picún Leufú 

troughs and thinning (50-100 m) across the Morro del Aguila, El Luchador and 

Paine Milla fault-block highs (Figs 4.5 and 4.9). 

The lower part of Unit 4 dominated by muddy heterolithic strata corresponds 

to distal lobe fringes (FA5.1) with a low sandstone proportion (Figs 4.9 and 4.10). 

The upper part of Unit 4 is characterized by a higher proportion of sandstone and 

includes stacked sandy heterolithic strata in proximal lobe fringes (FA5.2), 
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sandstone-dominated strata in lobe axes (FA5.3), and minor muddy heterolithic 

strata in distal lobe fringes (FA5.1) (Fig. 4.9). Individual lobes have a low aspect 

ratio (1.5-5 m thick, few kms across) and collectively these deposits form a 50-70 

m thick, ~5 km minimum wide and 6-8 km long intraslope lobe complex (Figs 4.9 

and 4.10). The intraslope lobe complex comprises basal dirty lobes (Fig. 4.6-G), 

mainly represented by frontal lobe fringe deposits with a high proportion of thin 

HEBs (mainly type 2 and 3) (Fig. 4.12). The dirty lobe deposits are characterized 

by a finer grain-size, argillaceous matrix and high clast content. The overlying 

cleaner lobes (Fig. 4.6-H) include lobe axis deposits with thick HEBs (Type 1) 

and frontal lobe fringe deposits with few thin HEBs (mainly Type 2). The cleaner 

lobe deposits are characterized by thicker beds, coarser grain-size and low 

argillaceous matrix and clast content (Figs 4.9 and 4.13). 

The intraslope lobe complex within Unit 4 records a rapid increase of 

extrabasinal siliciclastic supply, favouring oxygenation and increase of 

bioturbation intensity and diversity (Figs 4.2 and 4.13-D), consistent with the 

warming-up humid climate (cf. Volkheimer et al., 2008). The increase in volume 

and frequency of sand-rich sediment gravity flows over time, associated with the 

stratigraphic increase in bed thickness and grain-size, amalgamation rate, and 

increasing sand content upwards in the lobes of Unit 4 suggest progradation of 

the lobe complex (Crabaugh and Steel, 2004; Macdonald et al., 2011). The 

slightly shingled pattern of lobe sub-environments, high thickness and facies 

variability across short distances (100s m) and evidence for palaeoflow reflection 

and deflection associated with combined flow bedforms, may result from the 

development of lobes in a partially confined setting (Fig. 4.9). Partial confinement 

is supported by (i) the variable palaeocurrent directions and abrupt thinning of 

amalgamated sandstone lobe bedsets (1.5-5 m thick) across a few kilometres, 

passing down-dip into thinner sandstone beds (10s cm thick) without marked 

grain-size change or improvement in sorting (thin HEB-rich), (ii) the frontal 

terminations of these lobe bedsets that offset the abrupt pinchout of metres-thick 

debrites and (iii) development of a range of combined flow bedforms and of 

widespread erosion and scouring, even in lobe fringe settings, along lateral 

margins of lobe complex depocentre (Figs 4.9 and 4.13-D). 

Intrabasinal topography inherited across the El Luchador fault-block high 

formed a S-SW-facing oblique counterslope that influenced sediment gravity flow 

behavior and direction. Confinement indicators record deviation of the general 
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NE flow direction mainly towards the SE and rarely SW (Fig. 4.5). This is 

associated with development of opposite direction current-ripple laminations (Fig. 

4.8F) and small-scale anisotropic hummocky-like structures (Fig. 4.11-D) 

showing azimuth dispersion up to 180° and sole marks (mainly grooves) with 

average azimuth dispersion of 45° (see palaeocurrents Fig. 4.5). Therefore, the 

development of combined flows (Tinterri, 2011) is associated with oblique flow 

reflection and deflection (Kneller, 1991; Amy et al., 2004) against the 

counterslope flanking the El Luchador fault-block high (Fig. 4.13-D). 

The presence of the sill-dominated injectites network stratigraphically 

above, below and lateral to the lobe complex that onlaps the Paine Milla fault-

block high further supports substantial topographic confinement of lobes (e.g. 

Cobain et al., 2017). Laterally extensive sills (1.5-3.8 m thick, 5-8 km across) step 

outwards from the lateral lobe complex margins, and split with abrupt pinchout 

terminations across <1 km above the El Luchador fault-block high (Fig. 4.10). The 

linear ridges present on the top surface of some sills show a general NE-SW 

orientation which indicates a NW-SE direction of crack propagation, 

approximately parallel to the S-SW-facing counterslope (e.g. Kane, 2010). This 

together with the abrupt pinchout of the sills at this location might reflect the 

influence of the buried El Luchador fault-block high on the morphology of the 

injectite complex (e.g. Cobain et al., 2017). 

Widespread expulsion of basinal fluids has been reported locally with the 

formation of methane seepages associated with development of bioherms at the 

seabed during deposition of the Lower Los Molles Fm. (Gómez-Pérez, 2003). 

The trigger for injection may have been a combination of (i) deep-seated hot 

basinal fluid and gas expulsion through rift faults related to mature hydrocarbon 

plumbing systems in the syn-rift deposits, or sourced from crustal magmatic 

activity, and (ii) differential loading and compaction of buried strata, contributed 

to overpressure build-up (e.g. Boehm and Moore, 2002; Kane, 2010). 
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4.7 Discussion 

 

4.7.1 Early post-rift inherited topography 

 

Depositional patterns in early post-rift strata of the Lower Los Molles Fm. in 

the Chachil Graben are controlled by local deformation, which is unrelated to 

regional extensional tectonics. Here, the processes and significance of this 

deformation are discussed. 

 

Unit 3 

 

Local thickness change at the transition between the Paine Milla-El 

Luchador fault-blocks and the adjacent Picún Leufú trough must have been 

accommodated across a major buried/blind rift structure during deposition of Unit 

3 (Fig. 4.3-A). The limited facies and thickness changes in Unit 2 across this fault 

do not support a large bathymetric difference between the El Luchador fault-block 

high and the adjacent Picún Leufú trough at this time (Figs 4.7 and 4.13-B). 

Therefore, additional differential subsidence across this fault was required at the 

end of deposition of Unit 2 to create accommodation associated with the 

significant thickness change (>100 m compacted strata) observed at this location 

in the mudstone-dominated succession of Unit 3 (Figs 4.13-B and C). The 

presence of syn-depositional topography across the fault during deposition of 

Unit 3 is further supported by the facies change from calcareous mudstone with 

interbedded siltstone and bioclastic sandstone beds in the Picún Leufú trough, to 

condensed homogeneous mudstone on the El Luchador and Paine Milla fault-

block highs. These facies changes are consistent with compacted sedimentation 

rates in Unit 3 of 5.3 m/Myr on the structurally elevated fault-block highs, and 35.7 

m/Myr in the axis of the Picún Leufú trough, based on measured thickness (Fig. 

4.5) and the estimated age of Unit 3 for sedimentation rate (Fig. 4.2). Comparable 

compacted sedimentation rates are reported for the Kimmeridge Clay Fm. (20-45 

m/Myr, cf. McArthur et al., 2013), which similarly formed an extensive, organic-

rich mudstone blanket across rift topography in the North Sea. Moreover, stratal 

geometries of Unit 3 and Unit 4 record the long-lived influence of this fault-block 

relief, which formed a compaction hinge above the inferred blind fault tip, and that 

controlled deep-water sediment dispersal during deposition of Unit 4 (Figs 4.13-
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D and 4.14). If syn-depositional relief was formed by active extensional tectonics, 

one might expect near-fault damage (e.g. fracturing and folding), the deposition 

of coarse-grained event beds in the proximal hangingwall, and abrupt thickness 

change within Unit 3 in other locations of the graben. None of these are observed, 

hence other possible controls on the generated relief are considered.  
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Figure 4.14: Block diagram showing the evolution of sedimentation patterns and interactions 
with topography in the Chachil Graben from an underfilled to a sediment-balanced depocentre 

during the syn- to post-rift transition, detailing relationships between facies distribution and 
structures. Detailed logs in lobes show typical facies association of cleaner lobes rich in HEB 

type 1 and dirty lobes rich in HEB type 2 and 3, and distal lobe fringe deposits. 

 

It is suggested that syn-depositional relief developed due to differential 

compaction of early syn-rift strata of the Lapa Fm. (cf. Franzese et al., 2006) 

across the pre-existing rift fault bounding the Picún Leufú trough. Thicker deposits 

at this location compacted more than the thinner succession in the footwall blocks 

(Paine Milla and El Luchador). In other locations of the Neuquén Basin, small-

scale normal faulting, wedging and graben-scale folding of Early Jurassic strata 

around inherited rift structures are similarly related to differential compaction of 

the deeply buried syn-rift succession (Cristallini et al., 2006). Compaction-

induced surface deformation, including small-scale faulting and large-scale 

folding, can result from differential compaction across irregular rigid basement 

topography and/or arise due to lithological heterogeneity (e.g. Barr, 1991; Skuce, 

1996; Cristallini et al., 2006; Lohr and Underhill, 2015). Compaction-driven 

surface deformation proceeds over relatively short timescale (i.e. a few millions 

of years) and might have outpaced the low sedimentation rate during deposition 

of Unit 3. This increased the fault scarp relief and the gradient of the hangingwall 

in the Picún Leufú trough, which exceeded the critical sediment stability threshold 

(5°) for carbonate muds (cf. Kenter, 1990), triggering gravitational remobilisation 

and downslope redistribution of fine-grained sediment. As a result, Unit 3 

progressively healed the fault-scarp relief (i.e. “parallel onlap fill” Cartwright, 

1991). Most critically, our observations indicate that the timing of active (i.e. syn-
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rift) normal faulting in the Los Molles Fm. could be erroneously inferred based on 

relatively subtle changes in thickness and facies changes, which instead are 

controlled by post-rift differential compaction (cf. Carminati and Santantonio, 

2005). 

 

Unit 4 

 

Unit 4 is characterized by thinning with onlap updip towards the graben-

horst margin, thickening and dipping towards the E-NE into the graben. Unit 4 

onlaps onto basin margins defining a broad (~6 km across), NNE-trending, low 

amplitude monocline, slightly oblique to the NNW-trending graben-horst margin 

(Figs 4.1-C and 4.3-A). The absence or lack of preserved hangingwall strata 

above the uplifted graben-horst margin and the gentle dip of Unit 4, together 

suggest the monocline did not grow in response to horizontal shortening and 

related basin inversion. Instead, the monocline could have developed during the 

early post-rift in response to differential compaction across the southern margin 

of the graben (e.g. Barr, 1991; Cartwright, 1991; Skuce, 1996; Monaldi et al., 

2008; López-Gamundí and Barragan, 2012; Lohr and Underhill, 2015). The early 

post-rift strata recorded differential compaction, with thickening into an area of 

enhanced accommodation in the centre of the graben, with development of low 

amplitude, large-scale monoclinal folding and localized formation of a compaction 

hinge above a rift structure (Figs 4.1-C and 4.10). Therefore, the impact of 

compaction-induced deformation on early post-rift sedimentation patterns should 

receive more attention given its potential to form combined stratigraphic and 

structural traps and influence reservoir distribution (e.g. López-Gamundí and 

Barragan, 2012; Lohr and Underhill, 2015; Balázs et al., 2017). 

 

4.7.2 Controls on sedimentation during the syn- to post-rift transition 

 

Using outcrops of the Lower Los Molles in the Chachil Graben, a detailed 

analysis of the stratigraphic record of the transition from active syn-rift extension 

to tectonically quiescence conditions is provided to characterise the early post-

rift. Furthermore, the key role compaction-related deformation has in controlling 

basin physiography, sediment dispersal and stratigraphic architecture is 

highlighted. The transition from the late syn-rift to early post-rift is marked by a 



 150  
 

change from intrabasinal carbonate to extrabasinal siliciclastic sedimentation 

regime. Stratal stacking patterns changes from retrogradation to progradation, 

with the depocentre evolving from underfilled to sediment-balanced conditions 

(Figs 4.2 and 4.14). Rift basin topography, tectonic and climate appear to be the 

key factors controlling these changes. 

 

Late syn-rift  

 

Linkage of the fault border system of the Chachil Graben early during the 

rift climax (Franzese et al., 2006), and the presence of resistant granitic and 

volcanic rocks in the fault footwall might have prevented the development of local 

drainage catchments during the late syn-rift (Leeder et al., 1998). The relatively 

low-relief inherited from the overfilled depocentre configuration (sensu Muravchik 

et al., 2011) further limited intrabasinal clastic sediment supply and reworking of 

volcano-sedimentary syn-rift deposits (Lapa Fm.). In contrast, steeper gradients 

preserved in the adjacent Catán-Lil Graben promoted intense fault-block 

degradation and accumulation of late syn-rift fan deltas (Muravchik et al., 2014).  

Growth of normal faults during the late syn-rift segmented the immediate 

hangingwall downdip of the graben-horst border and induced a structural pattern 

that differed from the rift climax structural configuration (cf. Franzese et al., 2006). 

These conditions, together with the semi-arid climate (cf. Volkheimer et al., 2008) 

that was characterised by reduced precipitation, erosion, and both intrabasinal 

and extrabasinal sediment delivery, permitted the late syn-rift development of the 

carbonate system in the Chachil Graben (Fig. 4.14). Rapid marine flooding 

associated with fault linkage and rapid subsidence also suppressed sediment 

input by reducing the size of intrabasinal drainage catchments. Thus, instead of 

acting as an efficient clastic intrabasinal source during the late syn-rift and early 

post-rift, the horst border of the Chachil Graben underwent rapid marine flooding 

and acted as a submerged barrier that limited clastic influx in the graben. Fault-

block highs controlled the dimensions and morphology of shallow-marine isolated 

carbonate platforms and prevented their progradation in fault-block lows, which 

instead received mixed carbonate-clastic deposits reworked from the proximal 

periplatform (Fig. 4.14). With increasing relative sea-level rise and tectonic 

subsidence, the carbonate platform supplied greater flux of fine-grained sediment 

leeward of the graben-horst border (e.g. Dorobek, 2008). This resulted in 
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retrogradation of the system and accumulation of distal periplatform mixed 

carbonate-clastic mud-rich deposits in fault-block lows, whereas condensed 

sedimentation occurred over carbonate platform deposits onto fault-block highs 

(Fig. 4.14). Syn-rift deformation during deposition of the Chachil Fm. prevented 

the development of fault-block carbonate platforms in down-faulted depressions 

or the coalescence of the system into a larger composite platform, which would 

have required tectonic quiescence and subdued fault-related relief (Dorobek, 

2008). However, the warm-temperate nature of the carbonate system played a 

key role in its organisation and evolution across rift structures as the lack of early 

cementation and binding of these warm-temperate carbonate deposits favoured 

their reworking and resedimentation into allochemical biodetrital carbonate 

material into fault-block lows. However, these warm-temperate systems remain 

poorly documented in rift settings (Gulf of California, Halfar et al., 2004) compared 

to their tropical counterparts (Gulf of Aden and Suez Rift, Cross and Bosence, 

2008). The late syn-rift carbonate sedimentation and drowning of the system, in 

response to increased rates of fault-controlled subsidence, meant the Chachil 

Graben evolved into an underfilled depocentre; this had implications for the 

subsequent development of the early post-rift clastic system (Fig. 4.14). 

 

Early post-rift  

 

During the early post-rift, potential local intrabasinal fault-block sources 

were rapidly submerged and mud-draped as a consequence of high subsidence 

rates related to the back-arc evolution of the Neuquén Basin. Local (i.e. 

intrabasinal) sediment supply with degradation of intrabasinal fault-block highs 

was limited or absent at this time. This evolution contrasts with many examples 

of marine rift basins that are characterized by an early post-rift configuration with 

local intrabasinal clastic supply driven by subaqueous or subaerial degradation 

of fault-block highs (e.g. Zachariah et al., 2009; Jarsve et al., 2014; Henstra et 

al., 2016). 

An extrabasinal sediment source for the early post-rift lobes is suggested 

by the palaeocurrents with respect to rift structures (i.e. axial not transverse) and 

sandstone composition, which does not reflect transverse supply from the granitic 

bedrock forming the footwall blocks. The high amount of terrestrial organic 

material (wood, leaves, carbonaceous fragments), the presence of ostreid-
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bearing clasts found in some of the mud-rich debrites of dirty lobes (Fig. 4.11-C), 

and the abundance of armoured mudstone clasts and bioclasts (belemnites, 

bivalves and planktonic foraminifera) in some sandstones (Fig. 4.11-G), support 

hinterland-sourced, proximal shelf to slope sediments (Hodgson, 2009; Migeon 

et al., 2010; Talling et al., 2010). An extrabasinal source with high sediment yield 

was required to develop the coarsening-upward intraslope lobe succession that 

prograded in the graben, and caused the Chachil Graben to evolve into a 

sediment-balanced depocentre during the early post-rift (Figs 4.2 and 4.14). The 

warm humid climate that prevailed from the early Late Toarcian (cf. Volkheimer 

et al., 2008) provided conditions suitable for high amounts of erosion and riverine 

runoff, which together delivered high volumes of sediment towards the basin 

despite rising sea-level and overall highstand conditions (e.g. Leeder et al., 1998; 

Yu et al., 2013; Balázs et al., 2017).  

The inherited rift topography preserved in the southwestern Neuquén Basin 

(Legarreta and Uliana, 1996; Burgess et al., 2000; Gómez Omil et al., 2002) 

would have promoted trapping of clastic material along the shelf-slope system 

located >20-25 km southeast of the Chachil Graben, close to the hinterland 

source (see Fig. 4.1-A). This basin configuration, along with the deeply (up to 400 

m) submerged inherited rift topography and semi-arid conditions (Fig. 4.2) at the 

onset of the early post-rift, might have delayed extrabasinal siliciclastic influx in 

distal depocentres of the southern shelf-slope basin margin system (Fig. 4.2). 

Consequently, deposition of thick organic-rich calcareous mud across the 

inherited rift topography occurred in distal depocentres starved of clastic supply. 

This promoted the long-lived preservation of the rift basin physiography 

enhanced by differential compaction (Fig. 4.14). In a marine rift basin dominated 

by extrabasinal sediment supply, inherited rift topography plays a major role in 

trapping sediment in proximal parts of the basin margin during the early post-rift. 

Once proximal depocentres are filled, sediment bypass downslope permits the 

supply to more distal depocentres (Lien, 2005; Soares et al., 2012). Despite the 

delayed extrabasinal siliciclastic supply, the development of a distal sand-rich 

depocentre during the early post-rift in the Chachil Graben indicates that 

sediment gravity flows might have reached the graben across subdued 

topography. 
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4.7.3 Implications for characteristics of early post-rift lobe complexes 

 

The depositional architecture and facies distribution of intraslope lobe 

complex in the Lower Los Molles Fm. provide rare insights into the interaction of 

sand-rich sediment gravity flows with inherited early post-rift intrabasinal relief 

(Haughton et al., 2003; Southern et al., 2017; Dodd et al., 2019). The stratigraphic 

change from dirty to cleaner lobes (Figs 4.9 and 4.10) could be interpreted to 

record the variability of lobe environments at an onlap position, with the cleaner 

lobes representing lobe axis deposits passing downdip into dirty frontal lobe 

fringe deposits (i.e. time transgressive facies tract onlap of Pyles and Jennette, 

2009). Onlap-related trends such as these are interpreted to result from local 

topographic confinement and HEB development arising from a forced flow 

transformation (e.g. Pyles and Jennette, 2009; Patacci et al., 2014). However, 

this lateral trend is not observed, as the cleaner lobes do not pass downdip into 

the same HEB-rich dirty frontal lobe fringe deposits that they overlie (Figs 4.9 and 

4.14). Another potential mechanism for such a stratigraphic change is the 

progressive healing of intrabasinal relief formed by the compaction hinge 

obstructing the flow pathway, as early healing of relief could have limited flow 

interactions with the inherited topography. However, the presence of combined 

flow bedforms throughout the cleaner lobes supports sustained interactions of 

flows with the intrabasinal topography, which controlled the routing of flows 

feeding both dirty and cleaner lobes (Fig. 4.14).  

The contrast in facies types and HEB distribution between the dirty and 

cleaner lobes is interpreted to reflect progradation of the lobe complex with flow 

interaction and transformation across complex seabed topography). This 

situation prevailed until the sediment routing system became mature and enabled 

a reduction of flow interactions with intrabasinal relief, and resulted in only limited 

transformation of stratified sand-rich flows entering the graben. Widespread 

development of bed-scale heterogeneity is recorded in the dirty frontal lobe fringe 

deposits with the abundance of relatively thin HEBs (type 2 and 3) that have 

similar thicknesses of facies divisions (Fig. 4.12). Flow transformations giving rise 

to the deposition of thin HEBs may result from autogenic processes; i.e. through 

entrainment of muddy substrate that increased flow cohesion and reduced the 

turbulence. The dirty lobes mark the first stage of development of the intraslope 

lobe complex, with renewed extrabasinal clastic supply after a protracted period 
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of sand starvation and extensive deposition of organic-rich calcareous mud at 

onset of the early post-rift. The progressive maturation of sediment dispersal 

pathways might have suppressed the entrainment of muddy substrate. This is 

supported by the reduction of thin HEBs (type 2 and 3) (abundant in the dirty 

lobes) in the thicker-bedded and coarser-grained cleaner lobe axis and frontal 

fringe deposits (Fig. 4.14). However, thicker HEBs (type 1) containing a well-

developed debritic division encased by sandy divisions (Fig. 4.12) are common 

both in the dirty frontal lobe fringe and cleaner lobe axis. The sporadic distribution 

of these HEBs, which result from flow transformation with shear mixing at top and 

base of voluminous, long run-out debris-flows, seem to be the product of flows 

sourced from a proximal shelf-slope setting (e.g. Hodgson, 2009; Migeon et al., 

2010; Talling et al., 2010). 

The stratigraphic distribution of HEB type in the intraslope lobe complex is 

inherent to its evolution as an immature out-of-grade system across complex 

intrabasinal topography, common during periods of fan initiation and growth 

(Haughton et al., 2003; Hodgson, 2009). The intraslope lobe complex described 

here differs from unconfined to weakly confined base-of-slope and basin-floor 

lobe models (Prélat et al., 2009; Spychala et al., 2017) in terms of its dimensions, 

architecture and facies distribution (lack of well-defined off-axis subenvironment, 

facies transition across shorter distance, no spatial HEB segregation in a specific 

lobe fringe position but random occurrence at any lobe sub-environment, erosion 

and scouring at lobe complex lateral margins and presence of combined flow 

bedforms throughout the lobe complex). It is also noteworthy that the low net: 

gross early post-rift intraslope lobe complex in the Chachil Graben have similarly 

low aspect ratio (~5 km minimum wide x 6-8 km long x 50-70 m thick) to those 

previously described (6-10 km x 15-25 km x 10-15 m thick, Spychala et al., 2015; 

8 km wide x 8 km long x 120 m thick, Jobe et al., 2017), but are significantly more 

argillaceous (Fig. 4.9). Intraslope lobes stack vertically, displaying an upwards 

increase in grain-size, bed thickness and amalgamation rate, and a decrease in 

bed-scale heterogeneity. This results in the cleaner lobes having a better 

potential reservoir quality than the lower dirty lobes. However, the sporadic 

occurrence of HEBs with thick debrite divisions form extensive intralobe fluid flow 

baffles throughout the intraslope lobe complex (Fig. 4.14). The characteristics of 

partially confined intraslope lobes developed in the Los Molles Fm. shows that 

more investigations of outcrop and subsurface analogues are required to widen 
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the spectrum of intraslope lobes encountered in early post-rift settings (e.g. 

Southern et al., 2017; Dodd et al., 2019), which might deviate from current facies 

distribution and architectural models. 

 

4.8 Conclusion 

 

This study highlights the major reorganization of sedimentary systems and 

physiographic transformation of the rift topography with changes in sedimentation 

regime and stacking patterns characterizing the syn- to post-rift transition in the 

Chachil Graben. The late syn-rift evolution of the Chachil Graben into an 

underfilled depocentre with intrabasinal carbonate sedimentation was controlled 

by tectonic differential subsidence and rapid bathymetric deepening, which led to 

retrogradation and drowning of the carbonate system. Subsequent draping of the 

inherited rift topography by organic-rich calcareous mudstone inhibited 

intrabasinal sediment supply sources and recorded onset of the early post-rift. 

Rapid extrabasinal siliciclastic supply enabled the progradation of an 

extrabasinal-fed intraslope lobe complex and development of the Chachil Graben 

into a sediment-balanced depocentre. 

The architectural consequences of an early post-rift compaction hinge 

formed across a rift fault-block, which controlled local thickness changes within 

the organic-rich part of the Lower Los Molles Fm. and acted as an oblique 

counterslope for sand-rich flows is highlighted. Intraslope lobes evolved in an 

early post-rift setting with syndepositional relief that induced partial confinement. 

This promoted lobe progradation and pinchout towards the NE, with shingled 

stacking of lobe sub-environment and limited facies segregation across lobes 

with abundant HEBs. The intraslope lobe complex onlaps along the southern 

graben margin and is associated with injectites stepping towards the compaction 

hinge. Lateral lobe complex margin is characterized by common erosion with 

scouring and combined flow bedform development. Frontal lobe complex margin 

lack fining or sorting trend and is characterized by gradual pinchout of thin-

bedded HEB-rich sandy heterolithics, which offset the abrupt pinchout of thick 

HEBs with debrites. The low net: gross intraslope lobe complex records a 

stratigraphic evolution from dirty to cleaner lobes, with a decrease of intralobe 

bed-scale heterogeneity and sporadic distribution of thick debrites which form 

significant flow baffles between sandbodies.  
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There is a need to better constrain the effects of inherited rift topography 

potentially enhanced by differential compaction, which promote the development 

of major stratigraphic and combined structural trap with partial confinement of 

early post-rift lobes. The presented intraslope lobe model demonstrates the risks 

for reservoir deterioration (i.e. lobe heterogeneity) and post-burial remobilization 

of reservoirs at onlap margins in topographically complex settings. This study 

provides a rare analogue for subsurface systems to help characterize the 

dimensions, facies distributions, terminations and stacking patterns, of both 

intrabasinal late syn-rift carbonate systems and extrabasinal early post-rift deep-

marine sand-rich systems, with evolution of rift topography.  
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Chapter 5 Deciphering the stratigraphic variability of syn- to 

post-rift transition successions and physiographic evolution 

across several basins of the southern Neuquén Basin based on 

new U-Pb ages in the Los Molles Fm. 

 

5.1. Introduction 

 

The analysis of the interplay between tectonics, eustasy, climate, sediment 

supply rate and provenance in rift basin-fill patterns requires the identification of 

genetically linked depositional systems developed during distinct tectonic stages 

(Gawthorpe et al., 1994; Howell and Flint, 1996; Dorsey and Umhoefer, 2000; 

Martins-Neto and Catuneanu, 2010). The balance of sedimentation and 

accommodation can result in overfilled, balanced, underfilled, and starved basin-

fill patterns, and reflects the variability of documented early rift, rift climax, late rift 

and early post-rift stratigraphic signatures in marine rift basins (Prosser, 1993; 

Ravnås and Steel, 1998). A major weakness of rift basin-fill models is that they 

do not integrate (i) the effects of volcanism on the tectono-stratigraphic 

development of depocentres (Muravchik et al., 2011; D’Elia et al., 2018) and (ii) 

the spatial variability of structural and sedimentological processes associated 

with the syn- to post-rift stratigraphic transition are widely overlooked (Prosser, 

1993; Bosence, 1998; Ravnås and Steel, 1998; Gawthorpe and Leeder, 2000; 

Withjack et al., 2002; Martins-Neto and Catuneanu, 2010).  

Many authors have pointed out the importance of rift basin topography 

acting at the same rank as other factors of control on the stratigraphic architecture 

of rift basins (Howell and Flint, 1996; Ravnås and Steel, 1998; Burgess et al., 

2000; Young et al., 2003; Jackson et al., 2005, 2011; Veiga et al., 2013; 

Gawthorpe et al., 2018). However, little emphasis has been placed to date on its 

evolution and role during the syn- to post-rift transition and this can be rarely 

demonstrated across multiple rift basins. To date, few studies have examined the 

detailed nature and variability of late syn-rift and early post-rift depositional 

systems, and consequently the influence of evolving rift topography (i.e inherited 

pre-rift tectonic fabrics, fault-block reliefs and lows) on the stratigraphic 
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development of rift basins is poorly understood, particularly during the early post-

rift. 

Here, focus is made on changes of Early Jurassic sedimentation during the 

syn- to post-rift transition coeval with development of the Early Andean volcanic 

arc, associated with the stepwise marine flooding and decay of syn-rift volcanism 

across several rift basins of the southwestern Neuquén Basin. The contrasted 

tectono-stratigraphic development of two exhumed adjacent marine rift basins 

(Chacaico and Eastern Catán-Lil) in the southwestern part of the Neuquén Basin, 

are investigated with a <28 km long NW-SE oriented transect along-strike rift 

structures. The integration of sedimentology, stratigraphic and structural 

evolution of two basin-fills permits to document stratigraphic units and unpick their 

individual evolution during the syn- to post-rift transition.  

The stratigraphic framework proposed integrates new U-Pb SHRIMP zircon 

ages in the Los Molles Formation collected from the Eastern Catán-Lil and 

Chachil Basin. Discussion is focused on (i) the potential factors of control on the 

temporal and spatial variability of both shallow- and deep-marine sedimentation 

during the late syn-rift to early post-rift evolution of adjacent depocentres (Eastern 

Catán-Lil and Chacaico basins) and (ii) the effects of inherited rift topography on 

the contrasted basin-fill patterns across coeval depocentres of the study area at 

a regional-scale (Eastern Catán-Lil, Chacaico, Chachil, Western Catán-Lil and La 

Jardinera basins) and (ii) the palaeogeographic implications for the development 

of the early post-rift sand-rich depositional system of the Los Molles Formation at 

the light of the earlier onset of sediment supply presented in this study (since the 

late Early Toarcian).  

A rare level of detail is provided on the variability of depositional 

environments and sediment dispersal patterns developed in adjacent rift basins 

but also at a regional-scale, on the migration and linkage of volcanic syn-rift, 

marine late syn-rift and early post-rift depocentres, changes of sediment supply 

(intrabasinal versus extrabasinal sources) and mode of sediment dispersal 

(transverse versus axial systems). This study focused on the syn- to post-rift 

transition stage complements a gap which is poorly emphasised by classic rift 

basin models and constitutes a seismic-scale analog which might help to predict 

the spatial distribution and stratigraphic architecture of early post-rift intraslope 

systems. 
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5.2. Geological setting 

 

Intracontinental volcanic rift during the Late Triassic-Early Jurassic led to 

the opening of a series of rift basins across the southwestern Gondwana, which 

are now preserved in subsurface or exhumed in the Neuquén Basin, Argentina 

(36°S-40°S) (Fig. 5.1). Extension and widespread volcanism occurred with the 

post-orogenic thermo-mechanical collapse of an over-thickened crust inherited 

from a Palaeozoic period of subduction-collision and accretion of several terranes 

with the western Gondwana margin (Kay et al., 1989; Tankard et al., 1995; 

Vergani et al., 1995; Legarreta and Uliana, 1996; Franzese and Spalletti, 2001). 

Late Triassic to Early Jurassic rifting in the southern Neuquén Basin occurred 

with NE-SW-oriented extension and local stress field perturbation with 

reactivation of oblique pre-rift orogenic structures which induced oblique rifting, 

with development of strike-slip and en-echelon fault pattern (Vergani et al., 1995; 

Franzese and Spalletti, 2001; Silvestro and Zubiri, 2008; Mpodozis and Ramos, 

2008) (Figs 5.1 and 5.2). At basin-scale, the extensional strain was 

accommodated following simple or heterogeneous shear model, with mechanical 

decoupling between the crust and upper mantle along pre-rift suture zones rooted 

at lower crustal or lithospheric depths and lateral offset between the locus of 

lithospheric thinning and upper crustal brittle faulting (Comínguez and Franzese, 

2008; Sigismondi and Ramos, 2011).  

Onset of the Early Andean subduction occurred with oblique SE-oriented 

convergence of the proto-Pacific oceanic plate (Aluk plate) below the western 

Gondwana margin, with steep slab and negative trench rollback (Ramos, 1999; 

Mosquera and Ramos, 2006; Mpodozis and Ramos, 2008; Ramos et al., 2011). 

Activity of the Early Andean magmatic arc started between Late Triassic 

(Bermudez et al., 2002; Llambías et al., 2007) and Sinemurian-Pliensbachian (De 

la Cruz and Suárez, 1997; Schiuma and Llambías, 2008; Spalletti et al., 2010). 

Development of the Early Andean magmatic arc was accompanied by the first 

marine incursion from the Pacific Ocean which propagated diachronously, first in 

the north of the Neuquén Basin during the Rhaetian and reaching the southern 

border of the basin during the Early Pliensbachian (Riccardi, 1991; Damborenea 

et al., 2013; Leanza et al., 2013). The Early Andean volcanic arc migrated 

westwards during the Early Jurassic and the syn- to post-rift transition was 

recorded during the late Early Sinemurian in the north of the Neuquén Basin 
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(Lanés et al., 2008) and Late Pliensbachian-Early Toarcian in the south (Pángaro 

et al., 2009; D’Elia et al., 2015). Regional post-rift thermal subsidence controlled 

the progressive linkage of Early Jurassic marine rift depocentres across the 

inherited rift topography (e.g Burgess et al., 2000; Gómez Omil et al., 2002). This 

resulted in the formation of a single sag back-arc depocentre since Middle 

Jurassic, with local oblique transpressional reactivation of structures localized 

along the Huincul High (38-40°S) in the south of the Neuquén Basin (e.g 

Mosquera and Ramos, 2006; Mpodozis and Ramos, 2008; Silvestro and Zubiri, 

2008; Naipauer et al., 2012). The sag phase lasted for ~80 Ma from Middle 

Jurassic to Early Cretaceous, prior to its Late Cretaceous-Cenozoic subduction-

driven foreland evolution (Vergani et al., 1995; Gulisano and Gutiérrez Pleimling, 

1995; Legarreta and Uliana, 1996; Franzese and Spalletti, 2001; Howell et al., 

2005). 
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Figure 5.1: General map of the Neuquén Basin showing the distribution of syn-rift volcanic 
depocentres, basement and structures (after Gómez Omil et al. (2002), Silvestro and Zubiri 

(2008), Yagupsky (2009), Cristallini et al. (2009),Pángaro et al. (2009), García Morabito et al. 
(2011), Sigismondi and Ramos (2011), Bechis et al. (2014); location of the Early Andean 

magmatic arc is after Suárez and Marquez (2007) and volcanic arc depocentres after De la 
Cruz and Suárez (1997)). 
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Figure 5.2: Map of the Southern Neuquén Basin showing the structural configuration and 
distribution of syn-rift volcanic depocentres, basement and structures (after Gómez Omil et al. 

(2002), Silvestro and Zubiri (2008), Yagupsky (2009), Cristallini et al. (2009),Pángaro et al. 
(2009), García Morabito et al. (2011), Sigismondi and Ramos (2011), Bechis et al. (2014).) 
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5.3. Study area and structural framework 

 

5.3.1. Structural framework 

 

The study area located in the southwestern Neuquén Basin comprises five 

main depocentres which correspond to the Chacaico Basin, the western Catán-

Lil Basin, the eastern Catán-Lil Basin, the Chachil Basin and La Jardinera Basin 

(Fig. 5.3). 
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Figure 5.3: Regional geological map of the study area showing the location of the studied 
depocentres (Chacaico, Eastern and Western Catán-Lil, Chachil, La Jardinera), the location of 

the large-scale stratigraphic sections collected and U-Pb age data used in the stratigraphic 
chart of fig. 5.3 and 5.25. The map includes informations after Leanza and Blasco (1990), 

Gulisano and Gutiérrez-Pleimling (1995), Cucchi et al. (2005), Franzese et al. (2006, 2007), 
García Morabito et al. (2011) and Muravchik et al. (2014). 

 

The Chacaico Basin (Fig. 5.3) also forms a half-graben (15 km long, 10 km 

wide) bounded to the north by the E-W striking Cerro Trapial Mahuida fault and 

to the south by a WNW-ESE striking fault towards which syn-rift strata thickens 

(Franzese et al., 2007). This depocentre is dissected by some WNW-ESE striking 

and north or south dipping smaller scale intra-basin faults (few kilometres length). 

The Rincón del Polo and southern footwall border of the Chacaico Basin are 

cored by basement metamorphic rocks of the Piedra Santa Range which forms 

a south-verging anticline, inverted along the E-W striking Las Coloradas Fault 

(Fig. 5.3). The Sierra Chacaico forms an asymmetric NNE-SSW oriented and 

west-verging anticline, controlled by a NE striking and east-dipping reverse fault 

(Franzese et al., 2007). It corresponds to the westernmost exhumed extremity of 

the Huincul High, an ENE-WSW oriented intraplate structure along which 

inversion and uplift of a serie of grabens and half-grabens during the Andean 

compression resulted in the good exposure of syn- to post-rift strata in the study 

area (García Morabito et al., 2011) (Fig. 5.2). 

The Eastern Catán-Lil Basin (Fig. 5.3) forms a small half-graben (10 km 

long, 5 km wide) developed across the ~5 km long Cerro Mallín de Ibáñez 

hangingwall block of the NNW-SSE trending granitic basement cored structure 

which forms the southern extremity of Chachil horst border. The Cerro Mallín de 

Ibáñez block is segmented by ENE-WSW striking faults (few kilometres length), 

which are normal to its NNW-SSE striking and SW dipping fault border (Fig. 5.3). 

This major fault constitutes the southwestern border of the Eastern Catán-Lil 

Basin, which is bounded to the north by the NE-SW striking SE dipping Tutavel 

fault towards which syn-rift strata thickens. The northeastern border of this basin 

lies in subsurface and its southeastern margin corresponds to the Puesto Rincón 

del Polo basement high bounded by a NE-SW striking fault (Fig. 5.3). The 

Western Catán-Lil Basin forms a graben (25 km long, 15 km wide) bounded to 

the north by the NNW-SSE striking SW dipping Felipin fault and the NE dipping 

Lonqueo fault, towards which the syn-rift strata thickens (Gulisano and Gutiérrez-

Pleimling, 1995; Muravchik et al., 2014).  
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The Chachil Basin (Fig. 5.3) forms a graben (>15 km long, 10 km wide), 

bounded by the NNE-SSW and NW-SE striking Chihuido Bayo fault system to 

the SW and NW, whereas its SE and NE margins are uncertain as lying in the 

subsurface (Franzese et al., 2006). It comprises multiple NW-SE and NNE-SSW 

striking smaller faults and folds (cf. Chapter 4). The Chachil syn-rift strata thickens 

towards the northeast away from the Chachil horst border (5 km wide, >15 km 

long) controlled by NNW-SE striking Felipin and Chihuido Bayo faults (Fig. 5.3). 

The La Jardinera Basin (Fig. 5.3) forms a half-graben (15 km long, 10 km wide) 

bounded to the south by the NNW-SSE striking and NE dipping Rahue fault 

towards which syn-rift strata thickens and its northern border corresponds to the 

NNW-SSE striking and NE dipping Lonqueo fault.  

 

5.3.2. Stratigraphy of the study area 

 

The Chacaico, Eastern and Western Catán-Lil, Chachil and La Jardinera 

basins are bounded by fault borders (5-10s km long) which exhume pre-rift 

basement in their footwall (Figs 5.3 and 5.4). The pre-rift basement includes Late 

Carboniferous-Early Permian calco-alkaline plutons (Chachil Plutonic Complex) 

and Siluro-Devonian to Early Carboniferous low-grade metasedimentary rocks 

(Piedra Santa formation) and Devonian high to medium grade metamorphic rocks 

(Colohuincul formation) (Cingolani et al., 2011) (Fig. 5.3). Prior to deposition of 

syn-rift deposits, the basement underwent large-scale taphrogeny and regional 

erosion during a long period of exhumation recorded by the Early-Middle Triassic 

Huarpican unconformity (Llambías et al., 2007; Schiuma and Llambías, 2008).  

Syn-rift sedimentation in isolated taphrogenic basins was dominated by 

intense volcanism with the accumulation of continental volcano-sedimentary 

successions (Norian-Sinemurian) that form the Precuyano Cycle deposits 

(Franzese and Spalletti, 2001; Schiuma and Llambías, 2008; D’Elia et al., 2018) 

(Figs 5.3 and 5.4). The Precuyano Cycle is bounded at top by the Rioatuelican 

or Intra-Liassic unconformity which marks the unconformable contact with marine 

deposits of the Cuyo Group (Pliensbachian-Bathonian) (Gulisano and Gutiérrez 

Pleimling, 1995). Volcanic deposits record an evolution from acidic to less 

evolved calc-alkaline composition mixing crustal and mantellic sources, 

associated with the transition from intraplate rifting to back-arc extension since 

the Early-Late Sinemurian (199.0 ± 1.5 Ma, Schiuma and Llambías, 2008; 191.7 
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± 2.8 Ma, Spalletti et al., 2010) and probably earlier since the Late Triassic 

(Bermudez et al., 2002; Llambías et al., 2007). 

The Early-Middle Jurassic evolution of the Neuquén Basin is recorded by 

two 2nd order depositional sequences (J1 and J2 following Paim et al., 2008) 

separated by the Toarcian-Aalenian boundary: the Early Jurassic Cuyo Group 

and Middle Jurassic Upper Cuyo Group (Gulisano and Gutiérrez Pleimling, 1995; 

Vergani et al., 1995; Legarreta and Uliana, 1996; Paim et al., 2008). In the study 

area, the Cuyo Group includes the Early Jurassic Chachil, Chacaico and Los 

Molles formations, and the Middle Jurassic Middle and Upper Los Molles, Lajas 

and Challaco formations (Gulisano and Gutiérrez Pleimling, 1995; Paim et al., 

2008) (Fig. 5.3). The present study focusses on the Early Jurassic Cuyo Group 

to characterize syn- to post-rift transition successions exhumed in the 

southwestern part of the Neuquén Basin (Fig. 5.3). 

 

5.4. Methods 

 

5.4.1. Fieldwork 

 

Detailed mapping in the Chacaico and Eastern Catán-Lil basins using GPS 

referencing, DTM and Unmanned Aerial Vehicle (UAV) surveys was integrated 

with previous structural and geological mapping studies (Figs 5.3 and 5.4). 

Correlation of ten measured large (300-500 m thick) vertical sections logged in 

detail (1:25 scale) form the basis of a ~28 km long transect oriented NW-SE 

along-strike with respect to rift structures (Fig. 5.5). This transect includes 3 logs 

in the Chacaico Basin and 7 logs in the Eastern Catán-Lil Basin which form 

transects oblique to depositional dip (Fig. 5.5). Most of the facies associations or 

facies belts and related depositional packages could be tracked on the field due 

to the good lateral outcrop continuity. In addition, stratigraphic correlations of 

laterally extensive marker sandstone bed packages in the Los Molles Formation 

helped to further support log correlations as they could be walked out for several 

kilometres in the field and constrained with UAV photo panels. Logged vertical 

sections were used to interpret sedimentary processes, depositional 

environments and facies associations, and to define the stratigraphic units which 

belong to the Chacaico (Unit 1 and 2) and Los Molles formations (Unit 3 and 4) 

(Figs 5.4 and 5.5). Paleocurrent measurements (223 in total) collected from 
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ripple-cross-laminations and dune-scale cross-stratification, as well as from flutes 

and grooves were plotted in rose diagrams to reconstruct the palaeoflow 

pathways for each stratigraphic unit (Fig. 5.4). Analysis of facies associations, 

palaeocurrents, stratal geometries and thickness, and local deformation in 

relation to structures (faults and folds) were used to determine the influence of 

tectonism (locus and timing of fault/fold activity and reconstructed structure 

length) and inherited palaeotopography on sedimentation.  
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Figure 5.4: Detailed map of the two investigated Eastern Catán-Lil and Chacaico depocentres 
showing the location of logs collected, spatial distribution of tectono-stratigraphic units 

presented in this study, and palaeocurrents collected in each of these units. 
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Figure 5.5: Correlation panel showing the spatial distribution of facies associations and 
relationships between late syn-rift and early post-rift units across structures in each basins 

(location of logs are shown in the map fig. 5.4), with palaeocurrents and location of the tuff 1 
sample. Note that the main datum used to correlated unit is indicated in black dotted line. 

 

The palaeogeographic evolution of the two studied rift basins is based on 

spatial variations of facies associations and thickness, deformation and 

onlap/truncation patterns, enabling the evolution of depositional systems across 

rift structures. The four main stratigraphic units (Unit 1, 2, 3 4) bounded by 

stratigraphic surfaces which mark major sedimentary changes across basins and 

their correlation across basins are based on pre-existing geochronologic and 

biostratigraphic markers including ammonites, nannofossils, and bivalves 

biozones (Figs 5.3 and 5.6). The refined temporal and stratigraphic framework 

integrated with new U-Pb concordia ages in the Los Molles Fm. and thickness 

presented in this chapter also permitted estimation of sedimentation rates (Table 

5.1).  
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Figure 5.6: Stratigraphic scheme for the Chacaico and Eastern Catán-Lil basins, (see 

section location fig. 5.3) integrated with available constrains of thickness and fossil data from the 

literature (Volkheimer, 1973; Gulisano and Gutiérrez-Pleimling, 1995; Franzese et al., 2006, 

2007; Paim et al. 2008) and U-Pb zircon ages (186.3 ± 0.4 Ma in the Chachil Graben, Armella et 

al., 2016 modified from Leanza et al., 2013; 182.4 ± 2.3 Ma in the Chacaico Basin, Naipauer et 

al., 2018), as well as new U-Pb zircon data provided in this contribution (red stars).Nannofossil 

chronozones follow Ballent et al. (2011), standard European (EAB) and Andean (AAB) Ammonite 

biozone numbers follow Riccardi (2008) and bivalve biozones follow Riccardi et al. (2011). The 

TOAE is placed in the late Tenuicostatum-early Dactylioceras Hoelderi AAB after Al-Suwaidi et 

al. (2016) and in the NJ6 nannofossil chronozone after Angelozzi and Pérez Panera (2016). Note 

that the stratigraphic names for intraslope fans follow Paim et al. (2008). 

  

 

 

Table 5.1: Summary of units thickness and relative ages used in the stratigraphic chart and to 
estimate compacted sedimentation rates. 
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5.4.2. Geochronology 

 

5.4.2.1. Analytical method 

 

Two tuff samples were collected at base and top of the Lower Los Molles 

Fm. (Unit 3) (i) Tuff 1 at the top of Unit 3 in the Eastern Catán-Lil Basin (39° 

15.427'S 70° 34.959'W) and (ii) Tuff 3 at the base of Unit 3 in the Chachil Basin 

(39° 10.554'S 70° 31.447'W) (Fig. 5.7). Tuff samples of 2 kg each were crushed 

and grinded to recover zircons at the CIG (Centro de Investigaciones 

Geológicas). The first step for zircon separation is to use a 140 microns mesh for 

sieving, washing, and concentration of heavy minerals in the bottom and grooves 

of the tray, while the light minerals were discarded by its edge. The heavy mineral 

preconcentrate was washed with ethyl alcohol, recovered by filter paper, and 

oven-dried. Manual handpicking of 50 zircon grains was carried out under a 

binocular magnifying glass and stored inside an eppendorf tube to be sent for U-

Pb geochronology at Research School of Earth Sciences (RSES) of the 

Australian National University (ANU). U-Pb dating was carried out using sensitive 

high-resolution ion microprobe (SHRIMP-SII) following analytical procedures of 

Williams (1998) and Ireland and Williams (2003). Hand-picked grains (31 grains 

for Tuff1 and 29 grains for Tuff2) were mounted with standard zircon (Temora-2) 

in an epoxy disc, ground and polished to expose grain surface for laser ablation 

(Fig. 5.8-A). Cathodoluminescence imaging was conducted using SEM-EDS 

(Scanning Electron Microscope with Energy Dispersive Spectroscopy) to 

characterize idiomorphic zircon crystals (internal texture with oscillatory zoning 

indicative of igneous origin) inherent to their volcanic provenance, to ensure the 

absence of inherited cores and define laser ablation spots within well-zoned rims 

of euhedral grains.  

Analytical data were processed using SQUID (Ludwig, 2001a) and 

ISOPLOT/EX (Ludwig, 2001b), tabulated with isotopic data in Table 5.2. Uranium 

and thorium abundances have been calculated with reference to SL13 (238 ppm 

U) and the 206Pb/238U ratios have been normalized relative to a value of 0.0668 

for the 206Pb/238U ratio of the standard zircon Temora-2 of 417 Ma (Black et al. 

2004).  
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Figure 5.7: Sections located in the Chachil (see location of log in fig. 4.5) and Catán-Lil basins 
(see location of log in fig. 5.5) indicating the position of the tuff samples analysed in this study, 

at the base and top of Unit 3 which corresponds to the Lower Los Molles Fm. 
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5.4.2.2. Results 

 

The concordia ages are calculated with an error on the Temora-2 standard 

of ± 0.25 % (1σ) for the Tuff 1 and ±0.37 % (1σ) for the Tuff 3, and include 2σ 

decay constant uncertainties at 95% confidence level (Fig. 5.8). Tuff 1 yielded 

concordia ages ranging from 185.2 to 171.3 Ma out of 29 zircons with gaussian 

peak age at 178-179 Ma, and excluding two anomalous inherited grains (out of 

31 grains) at 152.2 and 301 Ma with high common Pb (see Table 5.2). The 

weighted arithmetic mean 206Pb/238U age calculated is 179.8 ±1.4 Ma (2σ) and 

isotopic data points plotted in a concordia diagram show minor deviation (Fig. 

5.8-B-C). Tuff 3 yielded concordia ages ranging from 198 to 178 Ma out of 26 

zircons with gaussian peak at 186 Ma, and excluding an inherited grain at 221 

Ma (out of 29 grains). The weighted arithmetic mean 206Pb/238U age calculated is 

184.4 ±2 Ma (2σ) and isotopic data points plotted in a concordia diagram show 

minor deviation (Fig. 5.8-B-C). The results of U-Pb ages obtained and their 

implications are discussed. 
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Figure 5.8: U-Pb geochronology results. A- Mount map of the tuff 1 sample zircons analysed 
and Temora-2 standard zircons. B- Concordia diagram for the tuff 1, with ellipses at 68.3% 

confidence level (1σ ) and concordia diagram for the tuff 3, with ellipses at 95% confidence level 
(2σ). Blue ellipse represents the centre of the obtained concordia age provided with 95% 

confidence level. N is the number of zircon grains recovered, n is the number of accepted zircon 
grains after excluding anomalous grains. MSWD is the Mean Square of Weighted Deviates. C-
Diagram showing the frequency of ages and mean age obtained in each samples and diagram 

showing the distribution of zircon spots realized for each sample. 
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Table 5.2: Summary of SHRIMP-II U-Pb results for zircons from tuff 1 and 3. 
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5.5. Facies associations 

 

The Early Jurassic Cuyo Group in the two investigated basins evolve 

stratigraphically from continental and shallow-marine deposits (Units 1 and 2) to 

deep-marine deposits (Unit 3 and 4) (Fig. 5.5). Detailed sedimentological 

analyses in these units allowed identification of 11 facies associations in the 

Chacaico (FA1.1, FA2.1, FA2.2, FA2.4, FA2.5, FA3, FA4.3) and Eastern Catán-

Lil Basin (FA1.2, FA2.2, FA2.3, FA3, FA4.1, FA4.2) where descriptions and 

interpretations are summarized in the Table 5.3. Note that the use of “epiclastic” 

refers to deposits with resedimented primary volcanic rocks (cf. White and 

Houghton, 2006) and that bioturbation index (BI) follows Taylor and Goldring 

(1993). The terminology used for lobe descriptions (lobe bedset, lobe complex, 

slope fan) follows Prélat et al. (2009). 
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Table 5.3: Facies association table with bioturbation index (BI) following Taylor and Goldring 
(1993). RXL: Current ripple-cross-lamination; CRXL: Climbing ripple-cross-lamination; DXS: 

Dune-scale cross-stratification; PL: Planar lamination; UnL: Undulatory lamination; QPL: Quasi-
planar laminations; SiL: Sinusoidal laminations; WR: Wave ripple; HCS: Hummocky cross-

stratification; Cc-rich: Carbonacoeus-rich 
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Table 5.3. (continue) 
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Table 5.3. (continue) 

F
a

c
ie

s
 

a
s

s
o

c
ia

ti
o

n

S
u

b
-

a
s

s
o

c
ia

ti
o

n
s

L
it

h
o

lo
g

y
F

lo
w

 I
n

te
rp

re
ta

ti
o

n
Ic

h
n

o
fa

c
ie

s
 a

n
d

 f
o

s
s

il
s

E
n

v
ir

o
n

m
e

n
t 

In
te

rp
re

ta
ti

o
n

F
A

2
.2

 S
h

o
re

fa
c

e
-

o
ff

s
h

o
re

 

tr
a

n
s

it
io

n
  
  
  
 (

4
-

5
4

 m
 t

h
ic

k
)

T
h
in

- 
to

 m
e

d
iu

m
-b

e
d

d
e

d
, 
b

io
tu

rb
a

te
d

 m
u
d

d
y 

s
ilt

s
to

n
e

 

a
n
d

 s
ilt

y 
m

u
d

s
to

n
e

 lo
c
a

lly
 la

m
in

a
te

d
 (

s
m

a
ll 

H
C

S
 0

.1
-0

.2
 

m
 w

id
e

, 
5

-1
0

 c
m

 t
h
ic

k
) 

b
e

a
ri

n
g

 f
o

s
s
ili

ze
d

 w
o

o
d

 (
u
p

 t
o

 

1
5

 c
m

 lo
n
g

),
 i
n
te

rb
e

d
d

e
d

 w
it
h
 s

k
e

le
ta

l p
a

c
k
s
to

n
e

-

flo
a

ts
to

n
e

 (
0

.5
-0

.1
5

 m
 t
h
ic

k
) 

w
it
h
 p

e
b

b
le

-s
iz

e
d

 b
io

c
la

s
ts

 

(b
iv

a
lv

e
-c

ri
n
o

id
-s

p
o

n
g

e
) 

a
n
d

 e
p

ic
la

s
ti
c
 p

o
ly

m
ic

ti
c
 

vo
lc

a
n
o

g
e

n
ic

 v
e

ry
 f
in

e
- 

to
 f
in

e
-g

ra
in

e
d

 s
a

n
d

s
to

n
e

, 
C

c
-

ri
c
h
, 
ta

b
u
la

r 
b

e
d

s
 (

0
.1

-0
.6

 m
 t
h
ic

k
),

 w
it
h
 s

h
a

rp
 p

la
n
a

r 

b
a

s
e

 a
n
d

 g
ra

d
a

ti
o

n
a

l t
o

p
. 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

A
ls

o
 p

re
s
e

n
t 
e

p
ic

la
s
ti
c
 m

o
n
o

m
ic

ti
c
 v

o
lc

a
n
o

g
e

n
ic

 

b
re

c
c
ia

s
 (

0
.5

-1
.5

 m
 t
h
ic

k
) 

w
it
h
 i
n
ve

rs
e

 c
o

a
rs

e
-t

a
il 

g
ra

d
e

d
 p

u
m

ic
e

s
, 
n
o

rm
a

l c
o

a
rs

e
-t

a
il 

g
ra

d
e

d
 p

e
b

b
le

-

s
iz

e
d

 f
e

ld
s
p

a
r 

a
n
d

 q
u
a

rt
z 

c
ry

s
ta

ls
, 
ta

b
u
la

r 
to

 le
n
s
-s

h
a

p
e

 

b
e

d
s
, 
w

it
h
 s

h
a

rp
 b

o
u
n
d

a
ri

e
s
. 
R

a
re

 m
e

d
iu

m
- 

to
 t
h
ic

k
-

b
e

d
d

e
d

 p
yr

o
c
la

s
ti
c
 b

re
c
c
ia

s
 (

0
.3

-0
.5

 m
 t
h
ic

k
),

 w
it
h
 

in
ve

rs
e

 g
ra

d
e

d
 p

u
m

ic
e

 la
p

ill
is

, 
ta

b
u
la

r 
to

 le
n
s
-s

h
a

p
e

 

b
e

d
s
, 
e

ro
s
iv

e
 b

a
s
e

 a
n
d

 s
h
a

rp
 p

la
n
a

r 
to

p
.

W
a

ve
-e

n
h
a

n
c
e

d
 d

ilu
te

 f
in

e
-

g
ra

in
e

d
 S

G
F

 a
n
d

 f
e

w
 s

a
n
d

-r
ic

h
 

flo
w

s
, 
w

it
h
 c

o
m

m
o

n
 o

s
c
ill

a
to

ry
 

c
u
rr

e
n
t 
re

w
o

rk
in

g
. 
 S

k
e

le
ta

l 

c
o

n
c
e

n
tr

a
ti
o

n
s
 s

u
g

g
e

s
t 

p
a

ra
u
to

c
h
n
o

n
o

u
s
-a

u
to

c
h
to

n
o

u
s
 

a
s
s
e

m
b

la
g

e
s
, 
w

it
h
 d

if
fe

re
n
ti
a

l 

re
w

o
rk

in
g

, 
a

n
d

 d
e

p
o

s
it
io

n
 b

y 

w
a

n
in

g
 s

to
rm

 s
u
rg

e
s
. 

P
yr

o
c
la

s
ti
c
 b

re
c
c
ia

s
 e

m
p

la
c
e

d
 

w
it
h
 p

u
m

ic
e

o
u
s
 d

e
n
s
it
y 

c
u
rr

e
n
ts

 a
n
d

 e
p

ic
la

s
ti
c
 

m
o

n
o

m
ic

ti
c
 v

o
lc

a
n
o

g
e

n
ic

 

b
re

c
c
ia

s
 w

it
h
 h

ig
h
-

c
o

n
c
e

n
tr

a
ti
o

n
 v

o
lc

a
n
ic

la
s
ti
c
 

g
ra

vi
ty

 c
u
rr

e
n
ts

.

B
iv

a
lv

e
s
, 
c
ri

n
o

id
 a

n
d

 s
p

o
n
g

e
 b

ro
k
e

n
 

fr
a

g
m

e
n
ts

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

(P
o

s
id

o
n
o

ti
s
 c

a
n
c
e

lla
ta

 p
re

s
e

n
t 
in

 

s
h
e

ll 
p

a
ve

m
e

n
ts

) 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

B
I: 

3
-4

 (
H

e
lm

in
th

o
p

s
is

, 
C

u
rv

o
lit

h
u
s
, 

T
h
a

lla
s
s
in

o
id

e
s
, 
C

h
o

n
d

ri
te

 

B
o

lle
n
s
is

, 
P

la
n
o

lit
e

s
, 
S

k
o

lit
h
o

s
)

S
h
o

re
fa

c
e

-o
ff
s
h
o

re
 t
ra

n
s
it
io

n
 w

it
h
 

d
is

ta
l t

e
m

p
e

s
ti
te

s
, 
o

c
c
a

s
io

n
a

l 

s
u
p

p
ly

 o
f 
w

it
h
 p

ri
m

a
ry

 a
n
d

 

re
w

o
rk

e
d

 v
o

lc
a

n
ic

la
s
ti
c
 m

a
te

ri
a

l 

e
m

p
la

c
e

d
 b

e
tw

e
e

n
 t
h
e

 F
W

B
 a

n
d

 

S
W

B
, 
w

it
h
 m

o
d

e
ra

te
-e

n
e

rg
y 

a
n
d

 

n
o

rm
a

l o
xy

g
e

n
a

ti
o

n
  
c
o

n
d

it
io

n
s



 183  
 

 

 

Table 5.3. (continue) 
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Table 5.3. (continue) 
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Table 5.3. (continue) 
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Table 5.3. (continue) 
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Table 5.3. (continue) 
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5.5.1. Unit 1  

 

Unit 1 comprises two facies associations: alluvial fan deposits (FA1.1) in the 

Chacaico Basin and proximal slope apron deposits (FA1.2,) in the Eastern Catán-

Lil Basin (Table 5.3 and Fig. 5.9). Unit 1 is onlapped by shoreface-offshore 

transition deposits (FA2.2) of Unit 2A in the Chacaico Basin and offshore deposits 

(FA2.3) of Unit 2A in the Eastern Catán-Lil Basin (Fig. 5.5). 

 

5.5.1.1. Description 

 

FA1.1 

 

This facies association corresponds to medium- to thick-bedded stratified 

pebbly sandstone (Fig. 5.9-A) very poorly sorted, coarse- to medium-grained, 

with wood debris (few cm long) and a high-concentration of subangular to 

subrounded volcanic, carbonate, metamorphic and granitic pebbles and rare 

cobbles (up to 10 cm long). Clasts provide a normal coarse-tail grading to beds 

with crude parallel to low-angle cross-stratification (<10 °), which amalgamate 

into lenticular bedsets (1.2-6.8 m thick, 10-50 m wide) with erosive concave-up 

base and sharp planar top (Log 2 Fig. 5.9-A). Bedsets cut through diffusely 

bedded greenish fine-grained tuffaceous sandstone with locally incised coarse-

grained massive sandstone channel-fills (5-10 m thick, 10-20 m wide) (Precuyano 

Cycle deposits) (cf. Muravchik et al., 2011). Some medium-bedded siliceous 

carbonates containing wood fragments and well-preserved Araucariaceae plant 

stems (Pagiophyllum sp., Spalletti et al., 1991) can be present within the fine-

grained sandstone (Fig. 5.9-B). 

 

FA1.2 

 

This facies association includes clast-supported and matrix-supported 

gravelly sandstone beds. Thick- to very thick-bedded clast-supported gravelly 

sandstone beds (1.4-6 m thick) comprise subangular to subrounded granitic, 

volcanic and siliciclastic cobbles (5-25 cm long) supported by a very poorly 

sorted, ungraded, coarse to very coarse-grained sandstone matrix. Beds are 

tabular to wedge-shaped, with erosive base and sharp planar top and commonly 
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form amalgamated bedsets (7-11.2 m thick). Very thick-bedded matrix-supported 

gravelly sandstone (3-4 m thick) (Fig. 5.9-C) have a very poorly sorted, ungraded, 

slightly muddy medium-grained sandstone matrix that support subrounded 

volcanic and siliciclastic cobbles and boulders (up to 40 cm long). Beds are 

tabular, with irregular loaded or sharp bases and undulated tops, which can 

present rare thick abraded bivalve shells (Kolymonectes coloradoensis, Gulisano 

and Gutiérrez-Pleimling, 1995) and form amalgamated bedsets (5-12 m thick) 

(Log 6 Fig. 5.9-B). They can be overlain by medium- to thick-bedded, poorly 

sorted and normally graded coarse- to fine-grained sandstone bedsets (0.8-1.2 

m thick) (Fig. 5.9-D), bearing subangular volcanic and granitic pebbles 

concentrated in the lower part of beds. Beds are lenticular, with erosive concave-

up base and gradational top that can be burrowed (Skolithos, BI: 1) and form 

amalgamated bedsets (1.2 m thick, 5-8 m wide). 
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Figure 5.9: A- Medium- to thick-bedded planar- to cross-stratified pebbly sandstone, very poorly 
sorted, coarse- to medium-grained and bearing normal coarse-tail graded, subangular volcanic, 
carbonate, metamorphic and granitic pebbles and rare cobbles (FA1.1). B- Siliceous carbonates 

containing wood fragments and well-preserved Araucariaceae plant stems found in the 
intervening fine-grained tuffaceous sandstone (FA1.1). D- Very thick-bedded sandstone with a 

very poorly sorted, ungraded, slightly muddy medium-grained sandstone matrix supporting 
subrounded volcanic and siliciclastic cobbles and boulders (FA1.2). C- Medium- to thick-
bedded, poorly sorted and normally graded coarse- to fine-grained sandstone (FA1.2).  
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5.5.1.2. Interpretation 

 

FA1.1: Alluvial fans 

 

In stratified conglomerate beds, the differential clast segregation, basal 

erosion, and tractive structures suggest deposition by high-concentration and 

hyperconcentrated flood flows (Sohn et al., 1999). The silicified carbonates 

deposited in freshwater alkaline lakes draining volcanic terrains, with adequate 

conditions for carbonate precipitation without microbial influence (Wright, 2012). 

FA1.1 deposits represent channel-fills on small alluvial fans (Blair and 

McPherson, 1994) in a floodplain environment with freshwater lakes (see also 

Muravchik et al., 2011). 

 

FA1.2: Slope aprons 

 

The clast-supported conglomerate beds with erosive base, lack of tractional 

structures, matrix support, and chaotic clast fabric suggest deposition from 

gravelly hyperconcentrated sheet flows in a subaerial environment (Smith, 1986). 

In contrast, thick-walled marine bivalves and sparse bioturbation support 

deposition of matrix-supported conglomerate and normally graded sandstone in 

a relatively shallow-marine environment. The matrix-supported conglomerate 

beds lack basal erosion, tractional structures and the random clast fabric in sandy 

matrix indicate en masse deposition from weakly cohesive sandy debris-flows 

with sufficient yield strength and buoyancy to support floating clasts (Talling et 

al., 2012). Coarse- to fine-grained sandstone bedsets show a crude normal 

grading with clast concentration in the lower part of beds and lenticular geometry 

with erosive base, which suggest deposition by high-density sediment gravity 

flows with significant bedload transport and local scouring (Lowe, 1982; Talling 

et al., 2012). These deposits therefore correspond to submarine clast-rich 

polymictic conglomerate slope apron deposits (e.g Leppard and Gawthorpe, 

2006) probably deposited below the storm-wave base. 
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5.5.2. Unit 2 

 

Unit 2 includes several facies associations (Table 5.3 and Fig. 5.10). Unit 

2A in the Chacaico Basin comprises lower shoreface (FA2.1) and shoreface-

offshore transition (FA2.2, 4-54 m thick) deposits onlapped by Unit 2B 

corresponding to prodeltaic (FA2.4) and delta-front deposits (FA2.5) (Fig. 5.5). 

Unit 2A and B in the Eastern Catán-Lil Basin comprise shoreface-offshore 

transition (FA2.2) and offshore deposits (FA2.3) (Fig. 5.5). Both Unit 2A and 2B 

are onlapped by siliciclastic-starved basinal calcareous mudstone deposits (FA3) 

in both basins (Fig. 5.5). 

 

5.5.2.1. Description 

 

FA2.1 

 

This facies association corresponds mainly to bioturbated sandy siltstone 

and sandstone packages (Log 2 Fig. 5.10). The sandy siltstone are diffusely 

bedded, intensely mottled (Macaronichnus, Skolithos, Thallasinoides BI: 4-5), 

fossiliferous (small ammonites and bivalves) and comprise thin to medium beds 

of fine- to medium-grained structured sandstone and skeletal grainstone (Fig. 

5.10-A). Structured sandstones are well sorted, with ripple-cross-laminations with 

wave-ripple tops or with anisotropic hummocky cross-stratification (0.2-0.5 m 

wide and 10-20 cm thick) and also bioturbated (Fig. 5.10-B and C). Skeletal 

grainstone beds are massive and comprise well sorted, granule-sized bioclasts 

of crinoid ossicles and sponge spicules in a medium-grained quartzous sandy 

matrix. Locally, the bioturbated sandy siltstone include some thin to thick event 

beds of and coarser-grained epiclastic polymictic volcanogenic sandstone (Log 1 

Fig. 5.10) They correspond to very poorly sorted, crudely normally graded, 

coarse- to fine-grained or massive sandstone with dominantly reworked 

volcaniclastic material and abundant carbonaceous detritus and bioclasts 

(bivalve and ostreid shells). Biogenic reworking is mainly represented by sharp-

walled burrows (Thalassinoides, Planolites, Phycosiphon, BI: 3). Basal inverse 

grading is also common in their massive lower part bearing outsized granules 

and pebbles. Locally, the upper part of beds contains plane parallel and dune-
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scale cross-stratification, capped by carbonaceous-rich fine-grained sandstone 

to muddy siltstone finely laminated. Non-gravelly sandstone beds are tabular to 

lens-shaped, with an irregular sharp planar to erosive base, and with sharp or 

gradational top. Gravelly sandstone beds include subrounded to subangular 

siliciclastic, volcanic and metamorphic pebbles and cobbles (up to 20 cm long) 

with normal coarse-tail grading (Fig. 5.10-D) and form lenticular bedsets (1-3.5 m 

thick, 10-20 m wide), with erosive concave-up bases and planar tops (Log 1 Fig. 

5.10). 
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Figure 5.10: A- Succession of highly bioturbated sandy siltstone interbedded with thin to 
medium beds of fine- to medium-grained structured sandstone and skeletal grainstone (FA2.1). 

B- Example of anisotropic hummocky cross-stratification in sandstone (FA2.1). C- 
Thallasinoides bioturbations in sandstone. D- Very poorly sorted, crudely normally graded (with 

local basal inverse grading), coarse- to fine-grained polymictic gravelly sandstone, bearing 
subrounded to subangular siliciclastic, volcanic and metamorphic pebbles and cobbles with 
normal coarse-tail grading in their lower part. E- Moderately bioturbated silty mudstone and 

muddy siltstone successions (FA2.2).  
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FA2.2 

 

This facies association is represented by silty mudstone to muddy siltstone 

packages with uncommon thin to medium sandstone and breccias beds (Log 1-

2 Fig. 5.10, Log 8 Fig. 5.11) and moderate bioturbation (Helminthopsis, 

Curvolithus, Thallasinoides, Chondrite Bollensis, Planolites, Skolithos, BI: 3-4). 

The silty mudstone and siltstone deposits (Figs 5.10-E and 5.11-A) 

commonly have carbonaceous debris (mm-scale), rare fossilized wood and can 

present convex-up convex-down shell pavements of disarticulated epifaunal 

bivalves including Posidonotis cancellata. They skeletal packstone/floatstone 

beds contain bed-parallel abraded, disarticulated bivalve shells and other pebble-

sized bioclastic material loosely packed in a silty-marly matrix (Fig. 5.11-B). Beds 

have a sharp planar base and gradational top, with an upward decrease of shell 

concentration.  

The sandstones include coarse-grained epiclastic polymictic graded 

sandstone beds (Fig. 5.11-C) and very fine- to fine-grained hummocky cross-

stratified or massive bioturbated sandstone beds (Fig. 5.11-D). Epiclastic 

polymictic sandstone beds (Fig. 5.11-C) are massive to normally graded, very 

poorly sorted, coarse- to fine-grained and structured with thick planar laminations 

(2-3 cm thick) that show inverse or normal coarse-tail grading of sand- to granule-

sized grains, with locally current ripples at top. Beds are tabular, with a sharp 

planar base and top with Skolithos burrows. 

Pyroclastic breccias are massive, characterized by inversely graded 

juvenile pumice lapillis (5 cm long) with intact ragged margins and plastic 

deformation (flattening) (Fig. 5.11-E). Clasts are arranged with their long-axis 

subparallel to bed top and are supported in a dark tuffaceous-clayey matrix. 

These two breccias facies have sharp bases and tops. Epiclastic monomictic 

volcanic breccias are massive or crudely stratified, with a mixed fine sandy and 

tuffaceous clayey matrix bearing abundant coarse grain sized angular crystals of 

feldspar and quartz with inverse coarse-tail grading. 
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FA2.3  

 

This facies association is composed of thin-bedded siliciclastic mudstone to silty 

mudstone, with scarce fine-grained sandstone, tuff layers and breccias (Log 8 

Fig. 5.11-F). Mudstone-dominated successions can be silicified and form chert 

with a banded fabric, alternating with whitish siliceous bands. Mudstone are dark 

grey to greenish, massive or laminated, weakly bioturbated (Phycosiphon, 

Chondrite, Cosmorhaphe; BI: 2) and comprise small ammonites and convex-up 

disarticulated or articulated shells. Fine-grained sandstone have pinch and swell 

geometry and internally they show planar parallel and current ripple-cross-

laminations (Fig. 5.11-G), locally with convolute laminations and flame structures 

(Fig. 5.11-H). These beds are tabular, with a sharp planar or loaded base and 

sharp planar to undulated top. Tuff beds are massive to planar stratified, with a 

whitish ash matrix and sporadic occurrence of pumice lapillis at top. 
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Figure 5.11: A- Thickening and coarsening-upward succession including basal thin-bedded 
mudstone and silty mudstone (FA2.3) grading upwards into silty mudstone to muddy siltstone 
packages with uncommon thin to medium sandstone and breccias beds (FA2.4). B-Skeletal 

packstone-floatstone with normally graded bioclastic material including broken or disarticulated 
shells, crinoid ossicles and sponge spicules in a silty-marly matrix (FA2.2). C- Very poorly 

sorted, coarse- to fine-grained polymictic sandstone planar laminated (2-3 cm thick) with inverse 
or normal coarse-tail grading of sand- to granule-sized grains (FA2.2). D- Very fine- to fine-

grained massive bioturbated sandstone including planolites, curvolithus and chondrite (FA2.2). 
E- Pyroclastic breccia with juvenile pumice lapillis (5 cm long) showing ragged margins floating 

in a tuffaceous clayey matrix (FA2.2-FA2.3). F- Thin-bedded siliciclastic mudstone to silty 
mudstone, with scarce fine-grained sandstone, tuff layers and breccias (FA2.3). G- Fine-grained 

sandstone with planar parallel and current ripple-cross-laminations (FA2.3). H- Fine-grained 
sandstone with convolute laminations (FA2.3).  
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FA2.4 

 

This facies association mainly comprises medium- to thin-bedded massive 

mudstone and planar laminated silty mudstone (Log 1 Fig. 5.12) with abundant 

organic material (mm-scale), rare ammonites, bivalve shells and low bioturbation 

(Chondrite, Planolites, Phycosiphon; BI: 1-2). Thin to medium and fine-grained 

sandstone beds and bioclastic sandstone lenses can be present (Fig. 5.12-A). 

The sandstone beds have undulatory to planar parallel laminations often with soft 

sediment deformation and loaded or sharp planar base and top (Fig. 5.12-B). 

Bioclastic lenses form massive, crudely normally graded, medium- to fine-grained 

sandstone with granule- to pebble-size comminute shell debris and complete 

shells, randomly oriented and locally mixed with subrounded siltstone pebbles at 

bed base (Fig. 5.12-C).  

 

FA2.5  

 

This facies association forms sandstone-prone successions including 

medium- to thick-bedded sandstone with intervening thin- to medium-bedded 

sandy heterolithics (Log 1 Fig. 5.12). Thick beds of moderately to well sorted, 

medium- to fine-grained sandstone are massive to weakly normally graded, with 

local inverse basal grading (Fig. 5.12-A). Beds often show planar to quasi-planar 

laminations and low-angle cross-laminations often enriched in flat carbonaceous 

debris (mm- to cm-scale) and commonly affected by soft sediment deformation 

at bed top. Bed base can show smooth or striated grooves and can bear 

deformed siltstone and rarely mudstone pebbles. Their top is dominantly 

unburrowed but can show locally few trace fossils (Ophiomorpha, 

Thalassinoides) (Fig. 5.12-A, inset). These thick sandstone beds are tabular and 

amalgamated with a blocky grain-size trend (1.2-9 m thick, averagely 3.3 m thick) 

or have sandy heterolithic interbeds. They form laterally extensive (1-2 km) high 

sand: mud ratio packages (up to 27 m thick). Thin- to medium-bedded sandy 

heterolithic packages comprise medium- to fine-grained sandstone (Fig. 5.12-B-

D-E), mostly interbedded with massive carbonaceous-rich siltstone and silty 

mudstone (Fig. 5.12-F, inset). Sandstone beds are normally graded with planar 

and low-angle cross-laminations or ungraded with quasi-planar to undulatory 

laminations associated with small isotropic hummocks and symmetrical ripples 
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with rounded crests (Fig. 5.12-D) or large anisotropic hummocks and 

asymmetrical rounded ripples with tangential to sigmoidal foresets (Fig. 5.12-E). 

Beds are tabular to lens-shaped and locally bioturbated (Thalassinoides, 

Planolites; BI: 1).  
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Figure 5.12: A-Thickening- and coarsening-upward succession including medium- to thin-
bedded massive mudstone and planar laminated silty mudstone with intervening fine-grained 

sandstone beds (FA2.4) grading upwards into medium- to thick-bedded sandstone-prone 
packages (FA2.5). Inset shows bioturbation (Ophiomorpha) at thick sandstone bed top). B- 
Fine-grained sandstone beds interbedded with planar laminated silty mudstone, showing 

undulatory to planar parallel laminations with soft sediment deformation (FA2.4). C- Medium- to 
fine-grained bioclastic sandstone lenses isolated within massive mudstone showing normal 
grading of granule- to pebble-size comminute shell debris and complete shells and siltstone 

pebbles (FA2.5). D- Moderately to well sorted, medium- to fine-grained normally graded 
sandstone, with planar and low-angle cross-laminations and siltstone pebbles (FA2.5). Inset 
shows carbonaceous-rich siltstone of sandy heterolithics. E-F Example of medium- to fine-

grained sandstone found in sandy heterolithic packages with quasi-planar to undulatory 
laminations associated with large anisotropic hummocks and asymmetrical rounded ripples with 

tangential to sigmoidal foresets (E) and symmetrical ripples with rounded crests (F).  
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5.5.2.2. Interpretation 

 

FA2.1: Lower shoreface 

 

Fine-grained bioturbated sandy siltstone deposited with settling from 

suspension under fair-weather conditions and HCS or ripple-laminated 

sandstone deposited with fair-weather- and storm-related processes which 

moulded relatively large sandy hummocks on the seabed (Cheel and Leckie, 

2009). The general abundance and diversity of trace fossils, dominated by 

deposit and suspension feeders is attributed to the mixed Skolithos-Cruziana 

ichnofacies, with well-oxygenated bottom and interstitial waters (MacEachern et 

al., 2007). Skeletal grainstone beds bear low diversity, but high-concentration of 

parautochthonous specimens with high abrasion and fragmentation degree. This 

points to intense wave reworking and short transport distance prior to deposition 

by sand-rich storm-related flows as proximal tempestites (Fürsich and Pandey, 

2003). 

On the other hand, the very poor to poor sorting, erosive base and traction 

structures and coarse grain size of thick to medium event beds of epiclastic 

polymictic volcanogenic sandstone contrast with the background fine-grained 

sandy and silty deposits. Characteristics of these beds often lacking an upper 

fine-grained bed division and with local basal inverse grading support deposition 

by high-density sediment gravity flows, with waning and waxing flow behaviour 

and frequent bypass of the more dilute part of flows (Lowe, 1982). Polymictic 

gravelly sandstone lacking mud matrix suggests deposition by gravelly high-

density to hyperconcentrated flows, with significant sustained bedload transport 

(Lowe, 1982; Mulder and Alexander, 2001). Sheet to lenticular bed geometries 

indicate deposition by highly erosive flows with variable confinement and bypass 

of all, but the coarsest material, which enabled the local development of basal 

channel lags (Gardner et al., 2003). These deposits cutting through fine-grained 

bioturbated sandy siltstone deposits are interpreted as isolated fan delta sandy 

bottomsets (Nemec and Steel, 1988; Postma 1990). 

FA2.1 deposits emplaced in a lower-shoreface environment developed 

under moderate energy with periodic sediment reworking by storm- and fair-

weather-derived processes, locally imprinted by fan-deltaic sand supply, under 
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well-oxygenated conditions enabling intense biogenic activity and, with frequent 

volcanic input. 

 

FA2.2: Shoreface-offshore transition 

 

Interbedded bioturbated muddy siltstone and silty mudstone reflect 

dominant settling from suspension during fair-weather wave winnowing and 

deposition of very fine- to fine-grained sandstone by storm-related flows which 

moulded relatively small sandy hummocks (Duke et al., 1991; Cheel and Leckie, 

2009). The greenish hue of sediment suggests high organic matter content 

(Uchman and Wetzel, 2011). The relatively low diversity, but locally high-density 

of trace fossil assemblage dominated by deposit and occasional opportunistic 

suspension feeders represent a Cruziana ichnofacies under normal oxygenation 

conditions (MacEachern et al., 2007). Skeletal packstone/floatstone with diverse 

and fragmented macrofauna beds points towards differential reworking, prior to 

deposition by waning storm surges as distal tempestites (Fürsich and Pandey, 

2003). The thin beds of epiclastic volcanogenic sandstone emplaced with 

tractional reworking beneath waning, high- to low-density sediment gravity flows 

(Lowe, 1982) are similar in composition to the sandstone found in FA2.1 and 

indicate a more distal depositional setting.  

The pyroclastic breccias lack traction structures, have sharp planar or 

locally erosive base, with aligned juvenile pumices at bed top, which suggest 

subaqueous transport and deposition by water-supported pumiceous density 

currents (Stewart and McPhie, 2004; Cas and Giordano, 2014). Conversely, the 

diffuse stratification, and the non-juvenile character and density-controlled 

settling of volcanogenic clasts indicate deposition of epiclastic monomictic 

volcanic breccias by stratified high-concentration gravity currents (Watton et al., 

2013). Collectively, these facies might record primary pyroclastic and post-

eruption resedimentation of freshly deposited loose pyroclastic debris due to 

wave reworking and/or slope instability shortly after volcanic eruptions (Watton et 

al., 2013).  

In summary, FA2.2 deposits are interpreted to reflect deposition between 

the fair-weather wave base and the storm-wave base in a shoreface-offshore 

transition environment (Reading and Collinson, 1996), characterized by low- to 
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moderate-energy conditions, moderate biogenic activity and normal oxygenation, 

as well as the frequent input of volcanic-derived material. 

 

FA2.3: Offshore 

 

Mudstone deposited from suspension settling and recorded infaunal activity 

dominated by grazers and deposit feeders, which indicates a high organic content 

in sediments. The relatively low intensity of bioturbation in this case might reflect 

fluctuating oxygenation conditions and Zoophycos ichnofacies (MacEachern et 

al., 2007). Extensive silicification, chert and siliceous bands indicate precipitation 

of silica-rich fluids at the seafloor or just below the sediment-water interface. This 

process might have resulted from enhanced hot thermal fluid circulation leaching 

silica through volcanic rocks with rapid cooling when mixing with colder seawater 

during marine flooding (Renaut et al., 2002). The fine-grained sandstones were 

deposited by dilute low-density sediment gravity flows (Lowe, 1982) and the 

common soft sediment deformation indicates rapid dewatering and sediment 

liquefaction after deposition. The tuff beds deposited with suspension fallout of 

ash clouds, settling of water-logged pumices and low ash concentration density 

flows (D’Atri et al., 1999).  

In summary, FA2.3 successions were deposited below the storm-wave 

base, under low-energy conditions in a fully marine offshore environment with 

weak biogenic activity due to fluctuating oxygenation conditions and frequent 

dilute sediment gravity flows and ash-fall. 
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FA2.4: Prodelta 

 

The carbonaceous-rich mudstone and silty mudstone with paucity of 

sedimentary structures suggest deposition with direct settling from hypopycnal 

plumes during flood peak discharge events and/or with collapse of dense fluid 

mudflows formed with storm-induced resuspension of flocculated river-flood mud 

(Ogston et al., 2000; Fan et al., 2004; Traykovski et al., 2007). The fine-grained 

sandstone beds with common planar to ripple-cross-laminations with soft 

sediment deformation suggest deposition with traction-and-fallout by 

unidirectional low-density sediment gravity flows. These could record episodic 

depositional events related to large river floods.  

The bioclastic lenses isolated within mudstone infill gutter casts or scour-

shaped depressions. Their gradational bed top, high shell fragmentation with 

good sorting of diverse parautochthonous specimens suggest intense 

mechanical wave reworking mixing prior to transport and redeposition by waning 

storm-wave generated flows (Fürsich and Pandey, 2003). The paucity of 

sandstone beds often obliterated by soft sediment deformation, scarcity of 

substrate bioturbation, together with the abundant carbonaceous terrestrial 

material in these deposits differ from characteristics of offshore deposits (FA2.3). 

Characteristics of these fine-grained deposits together with lateral association 

with delta-front deposits (FA2.5) points to high sediment fallout rate at proximity 

to riverine discharge in a low-energy prodeltaic open-marine environment 

(MacEachern et al., 2005). 

 

FA2.5: Delta-front 

 

Dominant normal grading, massive to planar and low-angle cross-

laminations, local basal erosion and tabular bed geometry with common abrupt 

pinchout terminations of medium to thick sandstone beds are the main 

characteristics of this facies association. They suggest deposition under lower 

and upper plane bed regime via rapidly decelerating high-concentration flows 

generated with river floods (Wright et al., 1977; Orton and Reading, 1993; Turner 

and Tester, 2006). The paucity of sand supplied to the prodelta suggest that most 

of the coarse-grained bedload was deposited in the delta-front by friction-

dominated fluvial effluents. Common soft sediment deformation and loading 
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structures, together with important bed thickness and amalgamation, support 

high sedimentation rates.  

In the sandy heterolithic packages sandstone include anisotropic and 

isotropic hummocks with quasi-planar to undulatory and low-angle cross-

lamination, asymmetrical rounded ripples, symmetrical wave ripples indicative of 

repeated wave action and storm-wave reworking under combined unidirectional 

or pure oscillatory flow conditions (Arnott and Southard, 1989; Arnott, 1993; 

Dumas and Arnott, 2006). The finer-grained carbonaceous siltstone and silty 

mudstone intervals in this facies association represent post-storm or post-flood 

suspension settling below the fair-weather wave base, and record low-energy 

conditions between sandy pulses. Therefore the thin- to thick-bedded sandy 

heterolithic packages should represent marginal mouthbar subenvironment.  

No tide flow indicators have been observed and the absence of syneresis 

or desiccation cracks and biogenic activity supports normal marine salinity, 

probably owing to repeated seabed ventilation by geostrophic flows. This is 

consistent with sporadic and low bioturbation intensity, probably corresponding 

to an impoverished Cruziana ichnofacies due to high sedimentation rates, water 

turbidity and storm-wave influence (MacEachern et al., 2005). 

FA2.5 is interpreted to represent shoal-water mouthbar-type deltaic 

depositional setting (Postma and Drinia, 1993; Garcia-Garcia et al., 2006; 

Ghinassi, 2007) dominated by river floods, spreading over mouthbars with 

frequent bypass of the finer-grained dilute suspended load in the prodelta and 

with intermittent record of wave and storm influence.  
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5.5.3. Unit 3 

 

Unit 3 is represented by one facies association that corresponds to 

siliciclastic-starved basinal deposits (FA3) both in the Eastern Catán-Lil and 

Chacaico basins (Table 5.3 and Figs 5.5 and 5.13).  

 

5.5.3.1. Description 

 

FA3 

 

This facies association is dominated by very-thin- to thin-bedded 

calcareous organic-rich mudstone showing variable carbonate content and 

relatively high TOC (Al-Suwaidi et al., 2016) (Fig. 5.13). Mudstone include local 

pyrite layers (<0.5 cm thick), thin tuff layers (1-5 cm thick) and bedding can be 

disrupted by oblate calcareous concretions (<15 cm long), or scarce bioturbation 

that mainly correspond to reduced forms (Chondrite Intricatus; BI: 1). Thin-shelled 

juvenile epifaunal bivalves (0.5 cm long) and ammonites (5-20 cm diameter) are 

mostly concentrated as discontinuous pavements with high-concentration of 

specimens preserved in life position or disarticulated.  
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Figure 5.13: A-Thin- to very thin-bedded calcareous organic-rich mudstone found A- in the 
Catán-Lil Basin, with darker color, concretions and rare tuff beds and B- in the Chacaico basin, 

with a lighter color as more calcareous and bearing large ammonites deposited parallel to 
bedding. 
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5.5.3.2. Interpretation 

 

FA3: Siliciclastic-starved basin 

 

Calcareous organic-rich mud deposited both by settling from hemipelagic 

biogenic surface productivity (McCave, 1984; Hudson and Martill, 1991) with 

occasional clastic dilution by ash fall. Low sedimentation rate is suggested by the 

formation of early cementation carbonate concretions (Taylor et al., 1995) and 

epifaunal bivalves communities which colonized the seabed (Fürsich and 

Pandey, 2003). Low energy conditions and deep-marine environment are 

suggested by the absence of evidence for post-mortem bottom current winnowing 

of thin-shelled epifaunal bivalves with deposition well-below the storm-wave base 

(200-400 m, cf. Gómez-Pérez et al., 2003). Shell pavements record maximum 

condensation probably associated with null to very low clastic input and/or high 

mortality episodes (Damborenea et al., 2013; Al-Suwaidi et al., 2016). 

Additionally, the low diversity and scarcity of bioturbation suggest very low 

oxygen levels, which might have promoted the good preservation of organic 

matter and support the lack of sediment gravity flows which would have bring 

oxygenation. Therefore, FA3 represents siliciclastic-starved basinal deposits 

accumulated way below the storm-wave base, under very low-energy and poorly 

oxygenated conditions, with rare ash-fall. 
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5.5.4. Unit 4 

 

Unit 4 is represented by two main facies associations which collectively 

represent an intraslope fan developed in a ramp-type system recorded in the 

Eastern Catán-Lil Basin (Figs 5.5 and 5.6) with deposits of distal ramp (FA4.1) 

and proximal ramp (FA4.2) lobes (Table 5.3 and Figs 5.14 and 5.15). In contrast, 

in the Chacaico Basin, Unit 4 lacks intraslope fan deposits and mainly consists 

into sand-starved slope mudstone-dominated deposits (FA4.3) (Figs 5.5 and 5.6). 

 

5.5.4.1. Description 

 

FA4.1 

 

This facies association is mostly composed of poorly sorted, matrix-rich, 

medium- to fine-grained sandstone with a tabular geometry, which can be 

amalgamated or interbedded with subordinated mudstone and are rarely 

bioturbated (Chondrite; BI: 1). It is possible to distinguish three types of packages 

having different mean bed thickness and sandstone-mudstone relationships (Log 

7 Fig. 5.14).  

Thick-bedded sandstone packages mainly consist into massive to crudely 

normally graded sandstone, locally with faint planar laminations and bearing few 

mudstone pebbles and cobbles (up to 10 cm long) often found in the lower part 

of beds (Fig. 5.14-A). Beds have a sharp planar or loaded base, and sharp top, 

and can form laterally extensive (several kilometres) amalgamated packages (1-

4.8 m thick, averagely 2.5 m thick). However, medium- to thick-bedded packages 

of sandstone regularly interbedded with massive silty mudstone and mudstone 

dominates. These sandstone bear numerous deformed mudstone pebbles 

distributed through the beds or near bed top (Fig. 5.14-B) and have sharp planar, 

and sometimes irregular erosive base that may have grooves, with sharp top (Fig. 

5.14-A and B). Some massive sandstone beds depleted of any sedimentary 

structures cross-cut the surrounding mudstone-prone strata at low-angle with 

abrupt pinchout terminations. They have a stepped base and deformed undulated 

top surface mantled by mudstone clasts and which can show grooves and 
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plumose structures. These sandstone beds are locally cross-cutted by thin 

subvertical sandstone bodies (few cm-thick, ~1 m wide).  

Finally, thin- to medium-bedded mustone-dominated heterolithic packages (Fig. 

5.14-C) include silty mudstone, mudstone and fine-grained sandstone either 

normally graded with planar and/or current ripple laminations or massive with 

small subrounded deformed mudstone pebbles at top. 

 

Figure 5.14: A- Thick-bedded, poorly sorted, matrix-rich, medium- to fine-grained sandstone 
with a tabular geometry, internally massive to crudely normally graded, locally with faint planar 

laminations, bearing few mudstone clasts in the lower part of beds. B- Medium- to thick-bedded, 
poorly sorted, matrix-rich, medium- to fine-grained sandstone interbedded with massive silty 

mudstone and mudstone. Sandstone bear deformed mudstone pebbles distributed through the 
beds or near bed top, and with sharp base and deformed top. C-Thin- to medium-bedded 

mufstone-dominated heterolithics including including silty mudstone, mudstone and fine-grained 
sandstone that can be normally graded with planar laminations or massive with small 

subrounded deformed mudstone pebbles.  
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FA4.2 

 

FA4.2 is mostly composed of poorly sorted, matrix-poor, coarse- to medium- 

or fine-grained sandstone, amalgamated or interbedded with subordinated 

mudstone, showing relatively low bioturbation (Chondrite, Planolites; BI: 2-3). 

Four different types of packages can be defined in this facies association 

according to bed thickness and sandstone-mudstone relationships (Log 5 Fig. 

5.15). 

Medium- to thick-bedded sandstone packages consist of poorly sorted, 

crudely normally graded sandstones (Fig. 5.15-A). The lower part of beds is 

mainly massive, locally with stepped laminae (1-2 cm thick). Outsized (very 

coarse) lithic grains, siltstone and/or mudstone pebbles, and bioclasts can be 

present near bed base. These beds can be bipartite and after a sharp grain-size 

break pass stratigraphically into finer-grained and muddier upper part with 

parallel planar lamination enriched in carbonaceous material (Fig. 5.15-B). 

Otherwise, it passes gradationally or with grain-size break into finer-grained 

sandstone with current ripples and/or climbing ripples (Fig. 5.15-C) and/or parallel 

planar to undulatory or sinusoidal laminations that can be carbonaceous-rich and 

form isotropic and anisotropic hummock-like bedforms (Fig. 5.15-D). In places, 

sandstone beds can show massive medium-grained, calcite-cemented conical 

clastic pipes widening upwards. Sandstone beds have a loaded (with flame 

structures) or sharp planar base, locally erosive (up to 20 cm relief, flute cast, 

grooves), and with sharp planar or gradational top commonly deformed. These 

sandstone have a tabular to slightly mounded geometry and commonly form 

laterally extensive (several kilometres) amalgamated packages (1.2-11.7 m thick, 

averagely 3 m thick) (Fig. 5.15-A and B). Locally, the erosive bed base can form 

scours (0.5-1 m relief, few to tens metres across) locally marked by a clast lag or 

a chaotic argillaceous and clast-rich sheared basal interval (Fig. 5.15-E). 

Medium- to thick-bedded sandstone-dominated heterolithic packages 

comprise non-amalgamated medium- to fine-grained sandstone with 

subordinated finer grained interbeds. Sandstone beds are normally graded, with 

parallel planar to undulatory laminations at the top (Fig. 5.15-D), or less 

commonly with dune-scale cross-stratification or current ripple-cross-laminations. 

Beds are tabular, with sharp planar base, locally erosive, and with sharp or 

gradational top. Some matrix-rich massive and clast-rich sandstone beds are also 
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present. The finer-grained interbeds consist of massive siltstone and mudstone, 

or thin-bedded with current ripple laminated sandstone reach in carbonaceous 

material.  

Thin- to medium-bedded sandstone-dominated heterolithic packages 

consist of interbedded medium- to fine-grained sandstone, massive siltstone and 

carbonaceous-rich mudstone (Fig. 5.13-F). Sandstone beds are either massive, 

locally with few mudstone clasts or normally graded with parallel plane to 

undulatory and current ripple-cross-laminations. Some rare mudstone clast-rich 

argillaceous chaotic sandstone beds can occur alone, or just form the upper part 

of bipartite beds or encasing sandstone (sandwiched beds, Talling et al., 

2013).These sandstone beds are tabular with sharp planar base and sharp or 

gradational top. 

Thin- to very thin-bedded mudstone-dominated heterolithic packages 

comprise siltstone and mudstone locally with massive to normally graded fine-

grained sandstone beds with carbonaceous-rich planar and current ripple-cross-

laminations. Beds are tabular, with sharp planar base and sharp or gradational 

top, and are commonly found in between sandy packages. Cone-in-cone 

structures and calcite-filled fractures can be observed in the mudstone. 

 

FA4.3 

 

This facies association is dominated by thin- to medium-bedded 

siliciclastic mudstone and siltstone bearing terrestrial fine plant material, with rare 

thin planar laminated or massive sandstone beds. Ammonites and small thin-

shelled bivalves (Bositra sp.) can be found in mudstone. 
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Figure 5.15: A- Medium- to thick-bedded, poorly sorted, matrix-poor, coarse- to medium-grained 
sandstone with a tabular to mounded geometry, internally massive with outsized (very coarse) 
lithic grains, siltstone and/or mudstone pebbles and bioclasts near irregular erosive bed base 

and with sharp top. B-Coarse to medium-grained crudely normally graded sandstone bed, with 
a massive clast-bearing lower part and a finer-grained muddier upper part with parallel planar 
lamination enriched in carbonaceous material. Note the sharp grain-size break between the 
lower and upper bed part and the amalgamated bed top highlighted with white dot line. C- 

Example of finer-grained structured upper part of beds with carbonaceous-rich parallel planar 
and climbing ripple laminations. D-Example of finer-grained structured upper part of beds 

parallel planar to undulatory laminations. Note the darker carbonaceous material. E- Chaotic 
argillaceous and clast-rich sheared basal interval which marks the concave-up scoured base of 
a thick sandstone bed. F- Thin- to medium-bedded sandstone-dominated heterolithic packages 
consist of interbedded medium- to fine-grained sandstone internally planar laminated and with 

sharp planar base and top, massive siltstone and carbonaceous-rich mudstone. 
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5.5.4.2. Interpretation 

 

FA4.1: Distal ramp lobes 

 

Characteristics of thick-bedded matrix-rich and clast-poor sandstone, with 

crude normal grading, massive or with faint planar laminations, suggest 

deposition with rapid collapse of clay-rich transitional plug flows (Baas et al., 

2009). The clast-rich sandstone of medium- to thick-bedded packages, with a 

weak to absent grading and variable argillaceous matrix and deformed mudstone 

clast content record substrate entrainment prior to deposition by low-strength, 

poorly cohesive sandy debris-flows (Talling et al., 2012).  

The few amalgamated sandstone bedsets might represent lobe axis 

subenvironment whereas the interbedded sandstone and silty mudstone which 

dominates this facies association 4.1 should correspond to a lobe off-axis 

subenvironment (Prélat et al., 2009). The thin- to medium-bedded mudstone-

dominated heterolithic deposits with normally graded and structured fine-grained 

sandstone emplaced with more dilute and turbulent low-density sediment gravity 

flows (Lowe, 1982). In contrast, the massive clast-bearing sandstones found in 

these heterolithic deposits were emplaced by thin poorly cohesive sandy debris-

flows (Talling et al., 2012). These packages represent a lobe fringe 

subenvironment (Mutti, 1977; Prélat et al., 2009). The massive sandstone beds 

cross-cutting the surrounding mudstone-prone strata at low-angle with abrupt 

pinchout terminations are interpreted as clastic sills injected by erosive flows with 

entrainment of lithified mudstone clasts which can be found mantling bed top 

(Cobain et al., 2015). The thin subvertical sandstone bodies that can cross-cut 

those laterally extensive sills are interpreted accordingly as clastic dykes. 

The matrix-rich lobes are characterized by the general paucity of traction 

structures, lack of common erosional basal surfaces, poor sorting and deformed 

mudstone clasts throughout or in the upper part of beds. This supports dominant 

deposition by transitional to debris-flows with a poor capacity for downstream 

sorting, consistent with the poor spatial segregation of facies across these lobes. 

Characteristics of FA4.1, with occasional amalgamated sandstone and dominant 

heterolithic facies suggest development of low sand: mud ratio sandy lobes in 

intraslope setting under poorly oxygenated conditions. This facies association 
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might represent the distal part of a deep-marine ramp system (Heller and 

Dickinson, 1985; Postma, 1990). 

 

FA4.2: Proximal ramp lobes  

 

Characteristics of medium- to thick-bedded matrix-poor sandstone points to 

deposition beneath high-density sediment gravity flows, with high bed 

aggradation rate and significant tractional reworking beneath waning dilute 

turbulent flows (Lowe, 1982; Leclair and Arnott, 2005; Sumner et al., 2008). 

Locally, undulatory or sinusoidal and climbing ripple laminations record 

deposition with a high rate of suspended load fallout (Jobe et al., 2012) and 

together with commonly deformed bed tops indicate high sedimentation rates.  

Hummock-like bedforms formed through traction-and-fallout beneath stratified 

high-density combined flows, with high sediment fallout rates enabling bedform 

aggradation in the upper-stage plane bed stability field (Tinterri, 2011). 

Anisotropic hummock-like structures formed with a dominant unidirectional flow 

component, whereas the more common isotropic hummock-like structures 

suggest a dominant oscillatory combined flow component (Tinterri, 2011). Given 

deposition below the storm-wave base, the oscillatory flow component could not 

originate with surface waves. Therefore, these bedforms are interpreted to form 

from interactions of internal wave trains with the near-bed unidirectional flow 

component, due to flow reflection and deflection against a confining slope 

(Tinterri, 2011).  

Common grain size break at top of thick massive sandstone beds suggest 

sediment bypass (Stevenson et al., 2015). Some crudely graded bipartite 

sandstone beds have a finer-grained, carbonaceous-rich and muddier planar 

laminated upper part which suggest emplacement by turbulence-enhanced 

transitional flows (Baas et al., 2009). Facies characteristics and amalgamation of 

thick tabular to mounded bedsets and channelforms associated with scoured 

base support deposition with abrupt decrease in confinement, in a lobe axis 

environment (Etienne et al., 2012). 

Medium- to thick-bedded and thin- to medium-bedded sandstone-dominated 

heterolithics were mainly deposited by waning high- to low-density sediment 

gravity flows (Mulder and Alexander, 2001). Massive clast-rich sandstone beds 

with variable mud matrix found in both of these heterolithic successions record 



 216  
 

also deposition by clay-rich transitional to quasi-laminar plug flows (Baas et al., 

2009). The presence of weakly erosive, structured and normally graded 

sandstone with some clast- and matrix-rich sandstone beds, and the well-

preserved finer-grained interbeds suggest deposition in lobe off-axis 

subenvironment (Prélat et al., 2009). The thicker sandstone beds with thin finer-

grained interbeds and their close spatial association with amalgamated 

sandstone packages could reflect a proximal off-axis setting whereas the thinner 

sandstone beds with thicker finer-grained interbeds might represent a distal off-

axis setting. 

Thin- to very thin-bedded mudstone-dominated heterolithics were mainly 

deposited with suspension fallout and tractional reworking beneath low-density 

turbidity current (Stow and Bowen, 1980; Lowe, 1982) and minor clay-rich 

transitional plug flows (Baas et al., 2009). The dominant thin beds with fine grain 

size, lacking erosion and with gradational tops indicate deposition in a lobe fringe 

environment (Mutti, 1977; Prélat et al., 2009). 

The diagenetic differences and morphology of the clastic pipes with the host 

sandstone suggests that they might correspond to fossilized vertical fluid flow 

conduits (Buck and Goldring, 2003; Ross et al., 2011), similar to non-textural 

pipes with pervasive carbonate cementation (e.g Wheatley and Chan, 2018). 

Cone-in-cone structures developed with fibrous calcite growth (which has been 

replaced by pyrite) due to vertical tensile stress induced by overpressure, with 

hydraulic fracturation and calcite precipitation (Cobbold et al., 2013).  

The matrix-poor lobes are characterized by well-developed erosion with 

local scouring, common traction structures and graded bed top that can be 

deformed, and local presence of grain-size breaks in beds. These features 

indicate deposition by higher-energetic waning flows able to achieve turbulence, 

locally with some bypass, which contributed to enable better spatial facies 

segregation across lobes.  

In contrast with FA4.1, these characteristics together with the coarser-

grain size and common amalgamation of sandstone, suggests the development 

of high sand: mud ratio lobes in intraslope setting, which should represent the 

proximal part of a relatively deep-marine ramp system (Heller and Dickinson, 

1985; Postma, 1990). 
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FA4.3 

These fine-grained deposits represent mainly deposition by suspension 

settling and dilute sediment gravity flows transporting terrestrial plant material. in 

a low-energy deep-marine environment. FA4.3 is mudstone-dominated and 

accumulated way below the storm-wave base, under low-energy and poorly 

oxygenated conditions. Given the spatial association with intraslope deposits of 

FA4.1 and 2 well constrained by ammonite biostratigraphy (Volkheimer, 1973; 

Gulisano and Gutiérrez-Pleimling, 1995), FA4.3 should represent their sand-

starved slope counterpart.  

 

5.6. Synthesis of depositional systems 

 

Unit 1 

 

In the Chacaico Basin, Unit 1 is characterized by stratified pebbly 

sandstone channel-fills that incise tuffaceous sandstone in the Lapa and Isasi 

sector (Figs 5.4 and 5.5). These deposits can pass laterally into lacustrine 

siliceous plant-rich carbonates in between the Val Sativa and Isasi sectors. The 

intercalation of high-energy flood deposits and coeval of freshwater lake 

sedimentation, suggest deposition on alluvial fan systems (FA1.1) (Fig. 5.9-A-B) 

in a relatively low-gradient floodplain environment in the Chacaico Basin (Blair 

and McPherson, 1994). The variable clast roundness and mixing suggests a 

relatively long storage in catchments and/or long transport distance with intense 

mechanical erosion prior to deposition (Muravchik et al., 2011). 

In the Eastern Catán-Lil Basin, Unit 1 corresponds to slope apron deposits 

(FA1.2) (Fig. 5.9-C-D), including clast-supported gravelly sandstone onto 

footwalls in the Tutavel sector (Fig. 5.16), and matrix-supported gravelly 

sandstone developed across subaqueous footwall to immediate hangingwall 

slope in the of Espinazo Del Zorro sector and around the Cerro Mallín de Ibáñez 

(Figs 5.4 and 5.5). These subaqueous slope aprons record the first evidence of 

marine transgression in these sectors, whereas the Tutavel footwall was 

emerged. The wider clast size range and less diverse lithologies indicate limited 

abrasion and sorting prior to remobilization of unconsolidated volcanic deposits, 

with short transport distance and/or and rapid deposition. This suggests 

deposition of slope aprons across steeper slope gradients than in the Chacaico 
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Basin, with subaerial to subaqueous fault-block degradation potentially related to 

fault activity (Leppard and Gawthorpe, 2006). The paucity of plant remains 

(dominated by conifers) suggests warm semi-arid to seasonally dry climatic 

conditions during deposition of Unit 1, supported by the well-preserved fresh 

angular feldspar and quartz grains with limited chemical weathering (Blair and 

McPherson, 1994; Leeder et al., 1998). In such conditions, development of the 

vegetal cover might have been hampered by the previous volcanic eruptions, and 

favoured remobilization of loose tephra during infrequent but heavy rainfall 

episodes (Muravchik et al., 2011; Palmer et al., 1993).  

The epiclastic nature of these deposits in both basins is supported by the 

occurrence of varied clast lithologies (volcanic, carbonate, granitic, metamorphic, 

siltstone, wood debris). Heterogeneity in clast shapes, sizes and lithologies 

between the two basins suggest different catchment bedrocks, storage period 

and morphologies. Palaeoflows recorded within Unit 1 in both basins suggest 

development as fault transverse dispersal systems, with a patchy distribution 

along fault strike consistent with local late syn-rift tectonic control. This is 

supported by stratal relationships with Unit 1 unconformably overlying the granitic 

basement and Precuyano Cycle volcanic syn-rift deposits, with a limited dip 

extent into immediate hangingwalls and pinchout towards the footwall highs (Fig. 

5.16). The lack of axial drainage systems might be a direct consequence of their 

deposition after the main phase of fault linkage and formation of master basin 

border faults (Gawthorpe et al., 2000; Muravchik et al., 2014). 
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Figure 5.16: Outcrop in the Tutavel sector (left) showing stratal relationships between units with 
onlap of the fine-grained strata of Unit 2A showing internal angular discordances onto alluvial 
fan deposits of Unit 1 unconformably overlying the granitic basement and Precuyano Cycle 

volcanic syn-rift deposits. Stratal dip angle decreases in overlying mudstone and sandstone of 
Unit 3 and 4. Note that distal ramp lobes of Unit 4 thin and pinchout towards the basin fault 

border northwestwards. Logs 8 and 7 shown in the correlation panel of figure 4 show thinning of 
proximal and distal ramp lobes from the Espinazo del Zorro to Tutavel sector. Location of the 

tuff 1 is also indicated.Location of the two outcrops A and B is shown on inset map (cf. fig. 5.4).  
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Unit 2 

 

Unit 2A 

 

In the Chacaico Basin, Unit 2A comprises high to moderately bioturbated 

fossiliferous shoreface-offshore transition deposits (FA2.2), coarsening upwards 

into sandy lower-shoreface deposits (FA2.1) (Fig. 5.9 and 5.17). Locally, 

intercalated coarser-grained fan-deltaic sandy bottomset deposits (FA2.1) 

developed in the tectonically over steepened Lapa sector and to the NW of the 

Isasi sector (Figs 5.4 and 5.5). In the Chacaico Basin, Unit 2A extends as wedge-

shaped packages that show (i) thickening of shoreface-offshore transition 

deposits (FA2.2) and (ii) thinning with onlap of fan-deltaic deposits (FA2.1), 

towards the flank of a NE-SW trending blind fault growth anticline fold in the 

Precuyano Cycle volcanic deposits (Fig. 5.18). This fold is few kilometres wide, 

parallel to the trend syn-rift faults which controlled the syn-rift, which are oblique 

to the main NNE-SSW trend of the Sierra Chacaico anticline (Fig. 5.4). Fan-

deltaic channels of Unit 2A stack towards the SE, away from the growth fold and 

can be offset by syn-depositional antithetic and synthetic small-scale normal 

faults (Fig. 5.18). All these features should record surface tilting and stratal 

rotation associated with unbreached fault growth fold development (e.g 

Gawthorpe et al., 1997; Jackson et al., 2005). Given the proximity of the fan 

deltas to terrestrial source and the similar coarse grain size, very poor sorting, 

clast shapes and immature sediment composition to epiclastic alluvial fans 

deposits that pinchout downdip, they might represent bottomsets developed in a 

relatively shallow-marine environment (Figs 5.10 and 5.18). Development of fan 

deltas into relatively shallow-water (~ 50 m depth) are also interpreted from time-

equivalent subsurface deposits located near the Puesto Touquet (see location 

Fig. 5.1) (Gómez Omil et al., 2002).  
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Figure 5.17: Detailed spatial relationships between FA1.1, FA2.1 and FA2.2 in the Chacaico 
Basin. 
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Figure 5.18: Outcrop in the Lapa sector showing successions which pass upwards from 
shoreface-offshore transition to fan-deltaic bottomsets in lower shoreface deposits (Unit 2A), 
with thickening of shoreface-offshore transition deposits and fan-deltaic deposits onlapping 

towards the flank of a NE-SW trending blind fault growth fold in the Precuyano Cycle volcanic 
deposits. Note channelforms (red dotted lines) stacked towards the SE, away from the growth 
fold and local offset by syn-depositional antithetic and synthetic small-scale normal faults and 

the stratal decrease of dip angles southeastwards in overlying deltaic (Unit 2B) and deep-
marine siliciclastic-starved basinal mudstone (Unit 3) and sand-starved slope mudstone 

deposits (Unit 4).  
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The lack of slope aprons supports deposition of Unit 2A across relatively 

subdued rift topography in the Chacaico Basin. Palaeoflows indicate progradation 

of fan deltas towards the ENE and NW (Figs 5.4 and 5.5), transverse to master 

fault segments. These line-sourced fan deltas which developed in the Isasi and 

Lapa sectors are part of a storm- and wave-dominated mixed carbonate-

siliciclastic shelf system, including more protected shallow-marine environments 

with high biogenic productivity that permitted the development of carbonate 

systems. This was recorded with the formation of detached carbonate platforms 

and carbonate-clastic periplatform systems in the most elevated fault-blocks of 

the Chachil Basin (Leanza et al., 2013) (cf. Chapter 4). Wave and storm-wave 

currents indicate a WNW-ESE direction which is parallel to the orientation of the 

southern fault border of the Chacaico Basin (Figs 5.4 and 5.5). Wave and storm-

wave agitation might have prevailed over fluvial influence and played a crucial 

role preventing strong variations of turbidity and salinity induced by fresh-water 

influxes which would not be tolerated by stenohaline ammonoids, echinoids and 

crinoids communities which were abundant bioclasts in deposits of Unit 2A (cf. 

Damborenea et al., 2017). The abundant plant debris in Unit 2A points to erosion 

of a vegetated coastal plain that might reflect the onset of a climatic change 

towards more humid and warmer conditions than during deposition of Unit 1. 

In the Eastern Catán-Lil Basin, Unit 2 successions are interpreted as 

shoreface-offshore transition and offshore deposits (FA2.2 and FA2.3) (Fig. 

5.19), with sandier shoreface-offshore transition deposits in Unit 2A than in Unit 

2B (Figs 5.5 and 5.11). Evidence for resedimentation processes, soft sediment 

deformation and both primary and epiclastic volcaniclastic deposits suggest 

intrabasinal supply from nearby volcanic eruptions and slope instability potentially 

associated with high slope gradients. Additionally, primary volcanic input and 

extensive recrystallization and silicification of fine-grained sediments of Unit 2A 

in the Eastern Catán-Lil Basin resulted from effects of hydrothermal fluid 

circulation which increased dissolved silica concentrations and alkalinisation of 

water chemistry (Renaut et al., 2002). The accumulation of large amount of fine-

grained material in this unit results from delivery of fine terrigenous and reworked 

volcanic particles at mouths of alluvial fan catchments. The composition of 

epiclastic polymictic volcanogenic sandstone of Unit 2 might indicate distal 

influxes from the fan-deltaic systems of the Chacaico Basin, and support the 

development of Unit 2A in the Eastern Catán-Lil Basin in a relatively sand-starved 



 224  
 

and deeper environment, at distance from the main sediment entry points. Unit 2 

shows onlap onto Unit 1 and Precuyano Cycle syn-rift footwall deposits, with 

multiple stratal discordances and wedging towards the NE from the Martinez to 

Espinazo del Zorro sector (Fig. 5.16). The maximum thickness of Unit 2 in the 

Espinazo del Zorro sector suggests maximum mechanical subsidence and 

increase of accommodation in this location (Figs 5.4 and 5.5). Along-strike stratal 

thickening towards the NW, from El Cóndor high to the Espinazo Del Zorro and 

Tutavel sectors indicate deposition across a structural platform in the Martinez 

and El Cóndor sectors (Figs 5.4 and 5.5). Stratal geometry with onlap and 

thinning towards fault footwalls showing internal angular discordances (Fig. 5.16) 

and palaeoflows towards the S and NW-SE mainly transverse to faults footwalls 

(Fig. 5.4), support syn-depositional hangingwall fault-block tilting during 

deposition of Unit 2A. 
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Figure 5.19: Detailed spatial relationships between FA1.2, FA2.2, FA2.3 and FA3 in the 
Chacaico Basin. 
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Unit 2B 

 

In the Chacaico Basin, Unit 2B includes successions of mudstone-

dominated prodeltaic deposits (FA2.4) coarsening upwards into sandy delta-front 

deposits (FA2.5) (Figs 5.12 and 5.20). Given the lack of gravelly material and 

widespread gravitational resedimentation typical of steep delta slopes (i.e. 

Gilbert-type), these deltaic deposits are interpreted to form shoal-water 

mouthbar-type deltas (Postma and Drinia, 1993; Garcia-Garcia et al., 2006; 

Ghinassi, 2007). In the Chacaico Basin, Unit 2B has not been observed to onlap 

or drape across syn-rift or basement rocks which were subdued and buried 

beneath Unit 2A. Unit 2B onlaps onto Unit 2A, with upward decrease of stratal 

dip angle which might indicate the decreased or arrest of fold growth in the Lapa 

sector, and supports the fact that this feature cannot be related to post-

depositional fault drag folding otherwise Unit 2B deposits would be deformed as 

well and all the Unit 2 would present some reverse faults (Fig. 5.18).  

The deltaic deposits of Unit 2B also seem to thicken from the Isasi to Lapa 

sector and towards the Cerro Colorado location (Fig. 5.4). Longitudinal onlap and 

stratal thickening of Unit 2B deposits northeastwards along the Sierra Chacaico 

suggest basin lengthening through time and syn-depositional increase of 

subsidence in this direction (e.g. Schlische, 1993). Subsidence was probably 

controlled by the main basin-border fault in the Cerro Trapial Mahuida area, which 

contrasts somehow with thickening of volcanic syn-rift Precuyano Cycle deposits 

southwards towards the Curru Charahuilla basin fault border (Franseze et al., 

2007). This is also supported by rotation of the dominant unidirectional palaeoflow 

direction ranging between NW-NNE as the main progradation direction, with 

subordinate ESE direction that might correspond to combined flow directions 

(Figs 5.4 and 5.5). The influence of storm-waves and wave-induced oscillatory 

flows reflect the development of the deltaic system in a high-energy, open-marine 

embayment (Ravnås and Bondevik, 1997). 
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Figure 5.20: Detailed spatial relationships between FA2.4, FA2.5 and FA3 in the Chacaico Basin. 
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Unit 3 

 

In the Chacaico Basin, siliciclastic-starved basinal mudstone deposits of 

Unit 3 (FA3) overlie prodelta deposits (FA2.4) of Unit 2B (Figs 5.5 and 5.20). 

These deposits record a condensed period of sedimentation related to an abrupt 

shut down of siliciclastic influx, without evidence for gravitational resedimentation 

or normal faulting which discards tectonic activity. In the Eastern Catán-Lil Basin, 

Unit 3 is also characterized by siliciclastic-starved basinal calcareous organic-rich 

mudstone (FA3) deposited under very low-energy and poorly oxygenated 

conditions (Fig. 5.13). Unit 3 can be observed to gently onlap Unit 2A in fault 

hangingwalls and to drape onto basement and Precuyano Cycle volcanic footwall 

deposits (Figs 5.16 and 5.19). As Unit 3 heals part of the inherited 

accommodation and relief at top of Unit 2A, it can present significant local 

thickness changes with thickening of up to 55 m between the El Cóndor high and 

Tutavel sectors (Fig. 5.5). Given that in the Chacaico sector, TOC measurements 

in the Lower Los Molles Fm. (nearly at the base of Unit 3) enabled identification 

of the Toarcian Oceanic Anoxic Event record (Al-Suwaidi et al., 2016; Angelozzi 

and Pérez Panera, 2016), Unit 3 in the Eastern Catán-Lil Basin should also record 

this regional event.  

 

Unit 4 

 

In the Chacaico Basin, Unit 3 is overlain by siliciclastic mudstone deposits 

including rare thin beds of sandstone (Gulisano and Gutiérrez-Pleimling, 1995) 

laterally equivalent to Unit 4 in the Catán-Lil Basin and therefore records the lack 

or paucity of sand influxes in slope mudstone dpeosits at this location (Fig. 5.5). 

In contrast, in the Eastern Catán-Lil Basin, the succession of Unit 4 

comprises a lower succession interpreted as distal ramp lobes (FA4.1) (Figs 5.14 

and 5.21) that are “precursor” to the overlying sandier succession interpreted as 

proximal ramp lobes (FA4.2) (Figs 5.15 and 5.23). Both distal and proximal ramp 

lobe successions are separated from each other by a laterally extensive 

mudstone unit (2.2-6.3 m thick) (Fig. 5.5). These deposits are collectively 

interpreted as reflecting the development and evolution of a deep-marine 

intraslope fan (Figs 5.4 and 5.5) developed across a relatively low-gradient ramp-
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type system. Unit 4 gradationally overlies Unit 3, with progressive development 

of the intraslope fan towards the N-NE from the Martinez to Tutavel sectors (Figs 

5.4 and 5.5).  

The distal ramp lobe succession (FA4.1) corresponds to lobe complexes 

(Prélat et al., 2009) which formed two small depocentres thickening in 

topographic lows of the Martinez and Espinazo Del Zorro sectors, and thinning 

across the El Cóndor fault-block which formed an inherited relief at the top of Unit 

3 (Figs 5.4 and 5.5). The two small distal ramp lobe complexes are characterized 

by the presence of sill-dominated clastic injectites stepping outwards lobe 

complexes margins adjacent to inherited buried topographic highs. This spatial 

relationship might reflect the deposition of these lobe complexes with substantial 

confinement that promoted post-depositional remobilization with differential 

loading and compaction of buried strata that increased overpressure (Cobain et 

al., 2017).  

These narrow and thick distal ramp lobe complexes (individually averaging 

32 m thick and traced over 1.5-4.5 kilometres downdip) include thick lobes (1-4.8 

m thick, averagely 2.5 m thick) which pass into lobe fringe deposits across 10s m 

to <100 m close to topography of the El Cóndor and Tutavel sectors limited by 

the Tutavel fault border (Figs 5.5 and 5.16). Several units of distal ramp lobe 

complexes can show an internal thinning-upward trend, which could reflect a 

discrete retrogradational pattern (Fig. 5.16), but overall their vertical stacking 

suggest aggradation of the system (Fig. 5.21). The lack of well-organized lobe 

stacking patterns which might be compensational, or lateral thickness and grain-

size trends, the low sand: mud ratio and low amalgamation rate (ranging between 

17.5 and 53.3%, averaging 27.7%) is characteristic of the distal ramp lobe 

complexes (Fig. 5.23). This, together with the scatter of palaeocurrents (Fig. 5.4) 

which vary between NW and NE direction might be related to effects of 

confinement by inherited intrabasinal mud-draped relief until the accommodation 

available was filled.  

The well-developed bed-scale heterogeneity consists into matrix-rich and 

abundant deformed mudstone clasts in these lobe complexes (see FA4.1). This 

could reflect initial muddy substrate entrainment with erratic routeing pathways of 

the first sediment gravity flows that could reach this part of the basin after 

travelling across a rugose slope. Characteristics of these deposits also suggest 

deposition by low volume, high efficiency, clay-rich transitional plug flows with 
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dampened turbulence (Baas et al., 2009). In these flows, high-suspended clay 

content could have played a significant role in delaying settling velocities for the 

medium-grained sediment fraction that could be transported across long distance 

(Gladstone et al., 1998; Al Ja'Aidi et al., 2004; Baas et al., 2009).  

The proximal ramp lobe succession (FA4.2) form lobe complexes 

deposited as a single and larger depocentre across intraslope topography 

subdued with deposition of the precursor distal ramp lobe complexes (Fig. 5.5). 

The proximal ramp lobe complexes thin and fine from the Martinez and El Cóndor 

sector, towards the Tutavel sector showing a spatial transition from typical matrix-

poor sandstone facies of proximal ramp lobes (FA4.2) to matrix-rich sandstone 

facies of distal ramp lobes (FA4.1) (Fig. 5.23). This suggests a transition to lobe 

complex margins towards the NW slope flanking the northern Tutavel fault border, 

which might have contained the proximal ramp lobe depocentre in the Eastern 

Catán-Lil Basin (Figs 5.16 and 5.23).  

The proximal ramp lobe complexes also individually thin and onlap from 

the Martinez sector towards the Puesto Ricón del Polo horst suggesting 

confinement of the proximal ramp lobe depocentre along the southeastern horst 

margin of the Eastern Catán-Lil Basin (Fig. 5.22). At the scale of lobe complexes, 

the lateral switching of successive lobe complexes towards the SE could reflect 

compensational stacking and increase in accommodation into the Martinez sector 

that is also suggested by the onlap pattern of lobe complexes shifting away from 

the Puesto Ricón del Polo horst margin (Fig. 5.22). Overall, the stacking pattern 

of proximal ramp lobe complexes reflects progradation towards the N/NE, 

followed by aggradation/compensation and southwards retrogradation with 

backstepping of the system upslope (Figs 5.4 and 5.23). 

The subdued depocentre configuration led to deposition of more laterally 

extensive and thinner lobe complexes (individually averaging 24.5 m thick and 

traced over 5 to 8.5 km downdip) than the precursor distal ramp lobe complexes 

(Figs 5.4 and 5.23). These proximal ramp lobe complexes show a higher sand: 

mud ratio, amalgamation rate (averaging up to 46.5%) and more widespread 

erosion in their axis than the distal ramp lobe complexes (Fig. 5.23). Individual 

proximal ramp lobe complexes can show an asymmetric coarsening- and 

thickening-upward and fining- and thinning-upward trend, which might reflect 

progradation followed by retrogradation of lobe complexes, with discrete 

compensation of individual lobes (Fig. 5.23). It is also possible to identify better-
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defined facies segregation across lobes between the weakly amalgamated 

margin of lobe complexes which has a low amalgamation rate averaging 27.7% 

and the centre of lobe complexes which has a higher amalgamation rate 

averaging 46.5% (Fig. 5.23). 

Characteristics of proximal ramp lobes (see FA4.2) indicate deposition by 

larger volume and lower efficiency, well-stratified high-concentration flows, able 

to achieve greater turbulence than the sluggish flows that deposited the distal 

ramp lobes, enabling significant traction and high bed aggradation rate. The 

proximal ramp lobe complexes also have a better-defined internal organization of 

subfacies associations (see FA4.2). This includes vertical thickness and grain-

size trends and lateral downdip thinning and fining over a few kilometres, with 

enrichment in dirty beds and transition into matrix-rich sandstone towards lobe 

complex margins (Fig. 5.23). The convergent onlap terminations of lobe 

complexes and the common occurrence of hummock-like bedforms point to some 

degree of containment with flow reflection and deflection against a confining slope 

(Kneller, 1991; Amy et al., 2004; Tinterri, 2011). 
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Figure 5.21: Detailed sections of the J1.2 distal ramp lobe complexes of Unit 4. 
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Figure 5.22: Outcrop view of onlapping proximal ramp lobe complexes (shown in fig. 5.23) 
towards the lateral basin margin. Location of the outcrop is shown on inset map (cf. fig. 5.4). 
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Figure 5.23: Detailed correlations showing the distribution of axis, off-axis and fringe facies 
associations in proximal ramp lobe complexes including the amalgamation rate in percentages 

and thicknesses. Quantitative diagrams in both distal and proximal ramp lobe deposits show the 
differences in the total proportions of facies association measured in the two types of lobe 
complexes, with a dominant occurrence of fringe and off-axis deposits in distal ramp lobes 

compared with proximal ramp lobes which are dominated by lobe axis and off-axis deposits. 
Note that lobe complexes with high amalgamation ratio include scours and channelforms in 

comparison with lobes having a lower amalgamation ratio and common finer-grained interbeds.  
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5.7. Stratigraphic architecture 

 

5.7.1. J1.1 sequence 

 

In the present study, the J1.1 sequence including Unit 1, 2 and 3 (Figs 5.6 

and 5.24) corresponds to the transgressive cycle of a 2nd order sequence 

(equivalent to J1 sequence in Paim et al. (2008)),. It is bounded at base by a 2nd 

order sequence boundary that corresponds to the Intra-Liassic unconformity at 

top of the Precuyano Cycle deposits (Fig. 5.24). This unconformity corresponds 

to a transgressive surface overlying continental conglomerate deposits of Unit 1 

in the Chacaico Basin and bounding the base of submarine conglomerate 

deposits (Unit 1) in the Eastern Catán-Lil Basin (Fig. 5.24). The top of this 

sequence corresponds to the top of Unit 3 which represents the maximum 

flooding zone (MFZ) and is bounded by a major flooding surface in both basins 

(Fig. 5.24). In the Eastern Catán-Lil and Chacaico Basin, the J1.1 sequence is 

represented by a siliciclastic storm- and wave-dominated shoreface to offshore 

system (Unit 2A) replaced in time by a deltaic system (Unit 2B). The facies of this 

sequence are significantly different in the Chachil Basin in which sedimentation 

is dominated by carbonates which form a detached carbonate platform and 

periplatform system (Fig. 5.24).  
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Figure 5.24: Stratigraphic scheme showing the interpreted parasequences (PS), parasequence 
sets (PSS) bounded by Flooding Surfaces (FS) and the main sequences J1.1 and J1.2. The 

early post-rift is recorded by Unit 3 which represents a Maximum Flooding Zone (MFZ) recorded 
both across the Chacaico and Eastern Catán-Lil basins. Distribution of facies associations with 
their respective percentage are indicated for each parasequence. Compacted sedimentation 

rates (calculated from Table 5.1) are also shown for each parasequence.  
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In the Chacaico Basin the J1.1 sequence includes five parasequences and 

two parasequences recognized in the Eastern Catán-Lil Basin. Parasequences 

are stacked vertically and bounded by non-erosive flooding surfaces and the 

facies association percentages calculated for each parasequence are shown in 

the Fig. 5.24. Despite the refined stratigraphic framework (Figs 5.5, 5.6 and 5.24), 

the physical correlation of individual parasequences between the two basins is 

uncertain as they cannot be traced across the basement footwall of the Puesto 

Rincón del Polo which isolated the Chacaico from the eastern part of the Eastern 

Catán-Lil Basin (Figs 5.4 and 5.5). However they can be integrated in a proximal-

distal transect as they record respectively the proximal and distal evolution of 

coeval sedimentary systems and factors of control in both basins.  

In the Chacaico Basin, Unit 2A comprises up to two parasequences (18-

31 m thick) recording a vertical transition upwards from shoreface-offshore 

transition to sandier lower shoreface deposits (Fig. 5.18 and 5.24). As the ratio of 

lower shoreface deposits relative to shoreface-offshore transition decrease 

upwards, they are grouped in a parasequence set with a retrogradational pattern 

(Fig. 5.24). The parasequence set boundary represents a major flooding surface 

and a change in the dominant depositional environment.  

The overlying Unit 2B in the Chacaico Basin comprises three sand-rich 

parasequences (40.8-97 m thick) (Fig. 5.24). Individually, parasequences record 

a shallowing upward trend, from muddy prodelta to sandy delta-front deposits 

topped by a marine flooding surface. Alternations of sand and mud, and the 

decrease in amalgamation rate within delta-front deposits of individual 

parasequence might result from fluctuations in sand discharge with short-term 

variations of frequency of storm or river flood events and/or minor rising pulses 

of relative sea-level (Hampson, 2000; Hampson and Storms, 2003). The 

consecutive three parasequences show a vertical decrease of individual 

parasequence thickness and increase in the thickness ratio of delta-front deposits 

at the expense of prodelta deposits (Fig. 5.24). Hence, they represent a 

parasequence set with aggradational to slight progradational pattern. The first 

two parasequences could record a coeval increase in the rate of relative sea-

level rise and sediment supply counterbalancing the transgression, whereas the 

thinner third one could record a decrease in the rate of relative sea-level rise 

and/or an increase in the rate of sediment supply. The top of the parasequence 
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set is represented by a large-scale flooding event recognized all across the two 

basins (i.e, base of Unit 3 Fig. 5.24). 

In the Eastern Catán-Lil Basin, Unit 2 comprises two fine-grained and 

thicker parasequences represented by Unit 2A and B (18-126 m thick) which both 

records a vertical transition upwards from offshore to shoreface-offshore 

transition deposits (Fig. 5.24). The parasequence set of Unit 2B in the Eastern 

Catán-Lil Basin records very little sand supply despite being coeval to prodelta 

and delta-front parasequence set of the Chacaico Basin (Figs 5.5, 5.6 and 5.24). 

That might be a consequence of the long-lived topographic high of the Puesto 

Rincón del Polo sector which isolated the two depocentres. The paucity of flows 

which could bypass the Chacaico Basin also suggests dominant trapping of 

coarse grained sediments in the delta which is characteristic of low-gradient 

shoal-water mouthbar-type delta (Postma and Drinia, 1993). The parasequences 

stack vertically with an increasing thickness, and an increase of the thickness 

ratio of offshore deposits at the expense of shoreface-offshore transition deposits 

(Fig. 5.24). Therefore, retrogradational stacking reflects deposition of this 

parasequence set with an increase in accommodation and sediment supply 

outpaced by the rate of relative sea-level rise, which might be the result of local 

mechanical subsidence. 

Major marine flooding is recorded at the base of Unit 3 by the accumulation 

of siliciclastic-starved basinal mudstone onto offshore and offshore-transition 

deposits in the Eastern Catán-Lil Basin, and onto delta-front deposits in the 

Chacaico Basin (Fig. 5.24). In the Chacaico Basin, maximum marine flooding 

resulted in drowning of the previous deltaic system (Unit 2B) and long-term 

deposition of carbonate-dominated mudstone (Unit 3). The shallow-marine 

deltaic system was abandoned as it could not re-establish and transit again 

across the shelf to supply sand in the Chacaico Basin after backstepping 

landward with marine flooding. In the Eastern Catán-Lil Basin, Unit 3 overlies 

shoreface-offshore transition and offshore deposits of Unit 2A, therefore the 

facies shift associated with marine flooding is less important than in the Chacaico 

Basin (Figs 5.6 and 5.24). These calcareous organic-rich mudstone deposited 

and draped inherited intraslope topography and as a result, they presently show 

local thickness variations across basins of the study area (Fig. 5.6). These fine-

grained sediments accumulated under very poorly oxygenated conditions and U-

Pb age constraints provided in the present study indicates that it should record 
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the Toarcian Oceanic Anoxic Event (TOAE) which has been constrained with 

ammonite biostratigraphy in the Chacaico Basin (Damborenea et al., 2013; Al-

Suwaidi et al., 2016) in time-equivalent deposits (Fig. 5.6). This interval records 

very low sedimentation rates (5-35 m/Myr based on compacted thickness, Table 

5.1) with mainly biogenic sedimentation and maximum condensation during a 

period of generalized sea-level rise. Hence, all the characteristics of Unit 3 can 

be regarded as recording the maximum fllooding zone associated with regional 

transgression (Fürsich and Pandey, 2003) (Fig. 5.6 and 5.24). 

 

5.7.2. J1.2 sequence 

 

The J1.2 sequence corresponds to the regressive cycle of the 2nd order 

sequence J1 in Paim et al. (2008), represented by the Unit 4 (Figs 5.6 and 5.24). 

J1.2 is bounded at top by the basal surface of the next intraslope fan J2.1 

sequence. 

Unit 4 record intraslope fan development in the Eastern Catán-Lil Basin, 

with progradation, aggradation and retrogradation that should reflect fan initiation, 

growth and retreat (Figs 5.23 and 5.24). Fan initiation occurs with deposition of 

the “precursor” distal ramp lobe complexes infilling accommodation, forming the 

first local sandy lobe depocentres with substantial confinement by mud-draped 

inherited intraslope topography. The distal ramp lobe depocentres mainly record 

successive stacking of lobe complexes with aggradation and final retrogradation 

associated with shut down of the system. Subsequent renewed fan growth and 

retreat is recorded by deposition of the proximal ramp lobe complexes (including 

the basal mudstone unit) (Fig. 5.23) with partial confinement across a more 

subdued intraslope topography and progressively healing and leveling remnant 

inherited intrabasinal relief (Figs 5.5 and 5.24). The proximal ramp lobe 

depocentre mainly record successive stacking of lobe complexes with 

progradation, aggradation with lateral compensation and final retrogradation 

associated with upslope backstepping and shut down of the system. The laterally 

extensive mudstone interval separating the distal ramp lobe complexes from the 

proximal ramp lobe complexes might record an intermittent decrease of sand 

supply which could reflect abandonment of the intraslope fan with major avulsion 

of the feeder system or variation of sediment supply at source. Therefore, the 

sequential organization of Unit 4 can be interpreted as comprising two smaller-
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scale sequences, each bounded at base by a flooding surface and respectively 

represented by the distal ramp lobe complexes (FA4.1) and the proximal ramp 

lobe complexes (FA4.2) (Figs 5.5 and 5.24). Major shut down of sediment supply 

to the intraslope fan in the Eastern Catán-Lil Basin is recorded with widespread 

deposition of a thick interfan mudstone succession (15-70 m thick) (sensu Prélat 

et al., 2009). 

In contrast, in the Chacaico Basin, Unit 4 records deposition of a significant 

thickness of siliciclastic mudstone accumulated until the Aaleanian (230 m thick, 

Volkheimer, 1973) contemporaneously of the development of the J1.2 intraslope 

fan recorded by Unit 4 in other basins (Fig. 5.25). Sand-starvation in this eastern 

basin suggests that shallow-marine deltaic system was abandoned as it could not 

re-establish and transit again across the shelf and might have switched laterally 

eastwards (see Gómez Omil et al., 2002). 

 

5.7.3. Summary and implications for the syn- to post-rift transition 

 

The changes in stratigraphic architecture and stacking patterns recorded by 

the evolution of sedimentary systems and sources during the syn- to post-rift 

transition also reflect key changes of shelf-slope basin physiography. The 

evolution of sedimentary systems in the J1.1 sequence records a great variability 

of sedimentation patterns, which might reflect the disorganization and multiplicity 

of systems developed across the irregular basin topography during transgression 

(Figs 5.25). It includes two main parasequence sets which record a progressive 

reduction in the rate of transgression, marked by an increase of individual 

parasequence thickness that could result from an increase of sediment supply 

with contribution of both intrabasinal (siliciclastic and volcanic arc-related) and 

cratonic extrabasinal sources, and/or a decrease of tectonic subsidence (from 

Unit 2A to B) (Fig. 5.24). This sequence should record shelf margin accretion with 

a rising trajectory during a period of relative sea-level rise with different 

expressions in each depocentres. This result in the coeval development of a fan-

deltaic and deltaic system in the most proximal rift depocentre fed by a 

southeastern extrabasinal source (according to palaeocurrents) related to the 

hinterland supply across the cratonic basin margin adjacent to the Chacaico 

Basin. In contrast, dominance of a mixed carbonate-siliciclastic system is 
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characteristic of depocentres distal to the cratonic basin margin, which instead 

received limited sediment supply from extrabasinal cratonic sources and more 

form intrabasinal sources reaching the Eastern Catán-Lil Basin.  

In contrast, the J1.2 sequence records regression during a period of slow 

relative sea-level rise or stand-still, with stacking of intraslope fan over former 

basinal mudstone deposits of regional extent that record a major marine flooding 

event (Fig. 5.24). The intraslope fan develops with the rapid renewal of sediment 

supply from a volcanic arc-related extrabasinal source (according to 

palaeocurrents). This extrabasinal source was different to the one that permitted 

the development of the deltaic system in the Chacaico depocentre, which then 

remained a sand-starved depocentre (Figs 5.6 and 5.24). The intraslope fan 

evolves stratigraphically from precursor distal ramp to proximal ramp lobe 

complexes which infill the inherited intrabasinal accommodation and heals 

topography in the Catán-Lil depocentre, prior to shut down of extrabasinal 

sediment supply from the southeastern cratonic basin margin. Therefore, the 

evolution of sedimentation with intraslope fan deposition recorded the 

establishment of a deep-marine sandy low-gradient ramp-type system, which 

permitted extrabasinal sediment supply from a source located to the south-

southwest (according to palaeocurrents); this is consistent with growth of the 

proto-shelf island arc basin margin. Therefore, the syn-to post-rift transition is 

characeterized by a major reorganization of sedimentary systems with 

progressive levelling the inherited rift basin topography, change of from mixed 

intrabasinal-extrabasinal to extrabasinal source contribution, and change of 

source location after the major marine flooding event marking onset of the early 

post-rift. 
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5.8. Discussion  

 

5.8.1. Chronostratigraphy: Revision of the stratigraphic framework at the 

light of new U-Pb ages 

 

This section re-emphasises the stratigraphic framework and clarifies the 

type of marine deposits representing the Chacaico and Los Molles Fm., based 

on sedimentation patterns observed across several depocentres (Fig. 5.25). Unit 

1 and 2 of this study (Figs 5.5 and 5.24) correspond to the Chacaico Fm. 

deposited during Early to Pliensbachian-Toarcian boundary in the Eastern Catán-

Lil and Chacaico Basin (Figs 5.3 and 5.25), following the original definition of the 

Chacaico Fm. in the Chacaico Basin (Volkheimer, 1973). However, all deposits 

of the Chacaico Fm. have sometimes been integrated as the base of the Los 

Molles Fm. (which is in this study defined at the base of Unit 3 and including Unit 

4) across all the study area (Gulisano and Gutiérrez Pleimling, 1995). This is also 

seen in several subsurface studies with the integration of carbonate and 

pyroclastic deposits (that belong to the Unit 2 of this study) at the base of the Los 

Molles Fm. (Gómez Omil et al., 2002; Bermudez et al., 2002; Schiuma et al., 

2008). The Chacaico Fm. should record respectively, shallow-marine fan-deltaic 

to deltaic deposits, and deep-marine offshore-transition to offshore mudstone-

dominated deposits (Unit 2) influenced by active volcanism (primary or reworked 

volcanic influx). The Chacaico Fm. should also lack deep-marine slope or basin-

floor submarine sandstone lobes. In contrast, the base of the Los Molles Fm. 

should be recognized as deep-marine siliciclastic-starved organic-rich calcareous 

basinal mudstone (Unit 3) associated with major marine flooding, which evolve 

into submarine fan sandstone and mudstone deposits (Unit 4). 

In the Chacaico Basin, a late Early Toarcian age of the TOAE in the Lower 

Los Molles Fm. has been constrained in the lower part of Unit 3 based on TOC 

measurements and biostratigraphy (Dactylioceras hoelderi Ammonite Andean 

Biozone-16, Al-Suwaidi et al., 2016; NJ6 Nannofossil Zone, Angelozzi and Pérez 

Panera, 2016) (Figs. 5.25). This same stratigraphic level in the Unit 3 was also 

sampled for U-Pb dating which provided a maximum depositional weighted mean 

age calculated for the youngest volcanic zircons at 182.4 ± 2.3 Ma (1σ) (Naipauer 

et al., 2018) (Fig. 5.25). Therefore, according to geochronology and ammonite 
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biostratigraphy, Unit 3 started to deposit from Early Toarcian in the Chacaico 

Basin (Volkheimer, 1973) and should be taken as the base of the Los Molles Fm. 

(Figs 5.5 and 5.25) 

In the Chachil Basin, the obtained U-Pb SHRIMP concordia ages indicate 

deposition of the Tuff 3 at base of Unit 3 occurred at 184.4 ±2 Ma (2σ) (Figs 5.7 

and 5.8), which implies a latest Pliensbachian age for the base of the Los Molles 

Fm. (Fig. 5.25). This is also supported in the Eastern Catán-Lil Basin, as the age 

of the base of the Los Molles Fm. can be estimated near the Late Pliensbachian-

Toarcian boundary given the occurrence of Posidonotis cancellata (Leanza) near 

the top of Unit 2B, based on the timing of the Posidonotis cancellata Assemblage 

Zone (cf. Riccardi et al., 2011) (Fig. 5.25). In the Eastern Catán-Lil Basin, the Tuff 

1 deposited at the top of Unit 3 occurred at 179.8 ±1.4 Ma (2σ) (Figs 5.7 and 5.8) 

which implies a late Early Toarcian age for the Unit 3-Unit 4 boundary in the Los 

Molles Fm. (Fig. 5.25). Therefore, biostratigraphic and U-Pb ages (including error 

margins) means that the deltaic system of the Chacaico Basin (Unit 2B) was 

contemporaneous with offshore to shoreface-offshore transition deposits 

accumulated in the Eastern Catán-Lil Basin (Unit 2B) (Figs 5.5 and 5.24). This 

shows the variability of sedimentation between the two studied marine rift basins 

during the Pliensbachian (Fig. 5.6).  

These results implies that siliciclastic-starved calcareous basinal 

mudstone (Unit 3) were deposited more or less contemporaneously across late 

syn-rift depocentres of the study area, and suggest the record of a major flooding 

event during the early-mid Early Toarcian, associated with onset of the early post-

rift (Fig.5.25). In a general perspective, it permits to change previous assumptions 

of some other authors who adopted a late Early Toarcian age to the base of the 

Los Molles Fm. both in the La Jardinera Basin (Paim et al., 2008), Chachil Basin 

and even from the southern to central Neuquén Basin (Cucchi et al., 2005; 

Leanza et al., 2013). The U-Pb ages obtained in the present chapter also point 

the diachronous character of the base of the Los Molles Fm. at basin-scale. This 

is shown by the U-Pb age (~182.3 Ma) obtained at top of the Chachil Fm. in the 

Chacay Melehue Basin of the central Neuquén Basin (see location Fig. 5.1), 

which indicates a maximum Early Toarcian age for the base of the Los Molles 

Fm. (Riccardi and Kamo, 2014). 

Finally, the late Early Toarcian age for the Unit 3-Unit 4 boundary implies 

the development of intraslope fan of the Los Molles Fm. earlier in the Catán-Lil 
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Basin than interpreted in the La Jardinera Basin. In this basin, the first deep-

marine intraslope sandy deposits have been placed at the boundary between the 

two 2nd order sequences J1-J2 (here equivalent to the boundary Unit 3-4) defined 

by Paim et al. (2008) after Gulisano and Gutiérrez-Pleimling (1995). This 

sequence boundary was advocated in order to support a scenario where sand 

supply is related with the Toarcian-Aalenian sea-level fall, and therefore related 

to eustatic control on sedimentation, without biostratigraphic control (Paim et al., 

2008). However, the study of radiolarian biostratigraphy sampled in the same 

section measured by Paim et al. (2008) permitted the Toarcian-Aalenian 

boundary to be placed ~150 m above the base of the first sandy lobe deposits, 

which form their J2.1 sequence (belonging to the 2nd order sequence J2) 

(Kochhann et al., 2011) (Fig. 5.25). Therefore, the Toarcian-Aalenian boundary 

is not located at the J1-J2 boundary, but instead at the top of the J2.1 sequence, 

and means that sandy deposits of J2.1 should have been deposited at least 

during the Late Toarcian (Fig. 5.25). This result is consistent with the obtained U-

Pb ages that support sand deposition started since the late Early Toarcian in the 

Catán-Lil Basin. Therefore sand supply occurred during the regressive cycle of 

the 2nd order sequence J1, earlier than previously thought, which is therefore 

named here J1.2 (Fig. 5.25).  

This has implications for previous models (Paim et al., 2008) that 

highlighted the boundary between the sequence J1 and J2 (equivalent here to 

the boundary between Unit 3 and 4), which was interpreted to mark an abrupt 

increase of sand supply associated with the syn- to post-rift transition in the La 

Jardinera Basin. However, the new U-Pb ages presented here highlight the 

diachroneity of sand supply and intraslope fans development between basins, 

and should not be taken as a lithostratigraphic record of the onset of early post-

rift. The new U-Pb ages permit to revise the stratigraphic scheme for the Early 

Jurassic Cuyo Group and its implications for controls on the sediment supply 

given that the J1-J2 sequence boundary appears to be older than previously 

assumed and might also be diachronous across basins (Fig. 5.25).  
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Figure 5.25: Stratigraphic scheme for the five main basins in the study area, integrated with 
available constrains of thickness and fossil data from the literature (Volkheimer, 1973; Gulisano 
and Gutiérrez-Pleimling, 1995; Franzese et al., 2006, 2007; Paim et al. 2008) and U-Pb zircon 
ages (186.3 ± 0.4 Ma in the Chachil Graben, Armella et al., 2016 modified from Leanza et al., 
2013; 182.4 ± 2.3 Ma in the Chacaico Basin, Naipauer et al., 2018), as well as new U-Pb zircon 
data provided in this contribution (red stars).Nannofossil chronozones follow Ballent et al. (2011), 
standard European (EAB) and Andean (AAB) Ammonite biozone numbers follow Riccardi (2008) 
and bivalve biozones follow Riccardi et al. (2011). The TOAE is placed in the late Tenuicostatum-
early Dactylioceras Hoelderi AAB after Al-Suwaidi et al. (2016) and in the NJ6 nannofossil 
chronozone after Angelozzi and Pérez Panera (2016). Note that the stratigraphic names for 
intraslope fans follows Paim et al. (2008). See location of sections on map fig. 5.3. 

 

5.8.2. Evolution of syn- to post-rift sedimentation at a regional-scale 

 

A synthesis of the stratigraphic architecture and palaeogeographic 

changes recorded by the Early Jurassic Cuyo Group is provided at a regional-

scale, across the Eastern and Western Catán-Lil, Chacaico, Chachil and La 

Jardinera basins, based on large-scale measured sections and complementary 

data from the literature (Figs 5.25 and 5.26). 
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Figure 5.26: Correlation of lithostratigraphic units across the five depocentres of the study area 
showing the different sedimentary systems developed across depocentres, with indication of 
units thickness, basin-fill trends, sequences and nomenclature with formations. Constrains of 
volcanic syn-rift thickness data from the literature (Gulisano and Gutiérrez-Pleimling, 1995; 

Franzese et al., 2006, 2007) and J2.1 sequence thickness after Paim et al. 2008 with J1.1 and 
J1.2 sequences thickness measured from the present study) and U-Pb zircon ages (186.3 ± 0.4 
Ma in the Chachil Graben, Armella et al., 2016 modified from Leanza et al., 2013; 182.4 ± 2.3 
Ma in the Chacaico Basin, Naipauer et al., 2018), as well as new U-Pb zircon data provided in 
this contribution (red stars).Note the maximum thickness are indicated (see range of thickness 

in fig. 5.25). 
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5.8.2.1. Late syn-rift sedimentation (Early-Late Pliensbachian) 

 

The late syn-rift recorded with the Chacaico and Chachil formations is 

characterized by the heterogeneity of sedimentation regimes ranging from 

subaerial coastal plain and lacustrine, to mixed shallow-marine carbonate and 

clastic, and deltaic systems (Figs 5.25 and 5.26). The development of a range of 

different depositional systems with a complex spatial organization resulted in 

significant along-strike fault variability of depositional environments and 

multiplicity of related sedimentary processes, similar to the Suez rift (Gupta et al., 

1999; Young et al., 2003; Jackson et al., 2005; Leppard and Gawthorpe, 2006; 

Cross and Bosence, 2008). The late syn-rift deformation was mainly 

accommodated with fault-block tilting (Figs 5.16 and 5.18) with thinning and 

onlapping across blind faults, stratal dipping into the hangingwall and with 

unbreached fault growth fold development with sedimentation rate outpacing fold 

growth rate (Fig. 5.18) (e.g Gawthorpe, 1997; Lewis et al., 2015; Khalil and 

McClay, 2018). 

 

During the late syn-rift, the Chacaico Basin evolved as an overfilled 

depocentre, which promoted the accumulation of intrabasinal fault-block 

catchment-fed alluvial fans, fluvial channels and lacustrine carbonates of alluvial 

plain of Unit 1, sandy shoreface with intervening fan-deltaic bottomset deposits 

and deltaic deposits of Unit 2 (~190-300 m thick) (Figs 5.27, 5.28 and 5.29). In 

this basin, the development of low-gradient systems might have been promoted 

by the limited inherited rift topography and overfilled conditions that resulted from 

significant accumulation of Precuyano Cycle volcanic deposits (50-600 m thick, 

Franzese et al., 2007; Muravchik et al., 2011) (Figs 5.25 and 5.26). The eastern 

part of the Eastern Catán-Lil Basin developed across a granitic basement 

structure which outcrops from the Cerro Mallin de Ibànez-Martinez sector to the 

Tutavel sector to the northwest, where it links with the Chachil Basin horst border 

bounded by the Felipin and Chihuido Bayo Fault (Fig. 5.3). The Eastern Catán-

Lil Basin recorded the influence of this granitic basement high dissected by 

normal faults, which formed a major accommodation zone across which a very 

limited thickness (<10 m thick) of Precuyano Cycle volcanic deposits 

accumulated (Figs 5.25 and 5.26). This granitic horst separated the Eastern 

Catán-Lil Basin from the overfilled syn-rift volcanic depocentre of the Chachil 
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Basin (10-2000 m thick, Franzese et al., 2006) (Fig. 5.3). The Chachil Basin 

evolved during the late syn-rift into an underfilled depocentre dominated by mixed 

carbonate-clastic deposits of Unit 1 and 2, which recorded the influence of ash-

fall from the volcanic arc (cf. Chapter 4) (Figs 5.27, 5.28 and 5.29). The Western 

Catán-Lil Basin, bounded by the Lonqueo Fault to the southwest and the Felipin 

Fault to the northeast, recorded overfilled syn-rift basin-fill condition with 

accumulation of significant thickness of Precuyano Cycle volcanic deposits (100-

1000 m thick) (cf. Gulisano and Gutiérrez-Pleimling, 1995; Muravchik et al., 2014) 

(Figs 5.25 and 5.26). Here, the late syn-rift strata is associated with thinning of 

footwall and hangingwall-derived alluvial fans and slope apron deposits of Unit 1 

(7-14 m to 50-200 m thick) away from basin bounding basement highs. In 

contrast, sand-starved offshore to shoreface-offshore transition deposits of Unit 

2 (37-194 m to 235-410 m thick) are thickening into growth synclines towards the 

centre of the Eastern and Western Catán-Lil Basin and record both intrabasinal 

siliciclastic and pyroclastic source contribution (Figs 5.28 and 5.29). The 

southwestern basin of La Jardinera (Fig. 5.3) lacks Precuyano Cycle volcanic 

deposits and formed a starved to underfilled late syn-rift depocentre which 

recorded deposition of pyroclastic monomictic breccias and polymictic 

conglomerates of Unit 1 (50- >350 m thick) above metamorphic basement cored 

fault hangingwalls and lack Unit 2 deposits (Figs 5.25, 5.26 and 5.27). 

In contrast to the Chacaico and Chachil Basin, which were overfilled, 

significant late syn-rift accommodation enabled the development of balanced to 

underfilled conditions in the Catán-Lil and La Jardinera Basin (Figs 5.25 and 

5.26). The inherited rift topography promoted the development of high-gradient 

transverse systems which formed narrow submarine slope apron conglomeratic 

fringes restricted to footwall and immediate hangingwall fault-blocks (Unit 1) (Fig. 

5.27). The composition of sediments and characteristics of clasts indicate very 

short sediment transport distance from intrabasinal sources which might have 

correspond to isolated small drainage basins developed along footwall fault-

blocks (e.g Muravchik et al., 2014). The hard granitic and volcanic fault-block 

bedrock lithologies of footwalls and the semi-arid climate (Volkheimer et al., 2008) 

might have contributed to limit sediment supply and the coarse grain-size of 

removed material prevented water turbidity (Fig. 5.28). Similarly to the Gulf of 

Suez (Cross and Bosence, 2008) these conditions permitted the coeval 

development of carbonate systems in the Chachil Graben, which evolved as an 
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underfilled late syn-rift depocentre (cf. Chapter 4) (Fig. 5.29). In contrast, the 

proximity of multiple point sources with extrabasinal supply from a cratonic 

hinterland along the shoreline of the Chacaico Basin permitted the development 

of a transverse deltaic system across a low-gradient basin margin previously 

healed by alluvial fan deposits and its evolution into a sediment-balanced 

depocentre (Fig. 5.29). 

Permanent reshaping of rift landscapes by volcanic-related processes 

inhibited the development of long-live and large drainage catchments during the 

late syn-rift. In non-volcanic rift basins drainage catchments form major inherited 

intrabasinal sources that can allow identification of the location of subsequent 

depocentres (e.g Gawthorpe et al., 2018). Therefore feedbacks between syn-rift 

volcanism, tectonism and sedimentation (e.g Muravchik et al., 2011; D’Elia et al., 

2018) contributed to limit sediment supply during the late syn-rift and conditioned 

the inherited accommodation and slope gradients. This resulted in a complex 

distribution of sedimentary environments, involving coeval intrabasinal 

(siliciclastic and volcanic-arc related) and cratonic extrabasinal sources (Figs 

5.27, 5.28 and 5.29) feeding transverse systems.  
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Figure 5.27:Palaeogeographic block diagram of the studied depocentres of the southwestern 
Neuquén Basin representing the Early Pliensbachian configuration during late syn-rift deposition 

of the Unit 1 with first transgression.  
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Figure 5.28: Palaeogeographic block diagram of the studied depocentres of the southwestern 
Neuquén Basin representing the Early-Middle Pliensbachian configuration during late syn-rift 

deposition of the Unit 2A with transgression and formation of fault-block ilsands. 
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Figure 5.29: Palaeogeographic block diagram of the studied depocentres of the southwestern 
Neuquén Basin representing the Middle-Late Pliensbachian configuration during late syn-rift 

deposition of the Unit 2B with generalized flooding of fault-block islands. 
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5.8.2.2. Early post-rift sedimentation (Early Toarcian-Aalenian) 

 

Onset of the early post-rift is recorded with a major marine flooding event 

and establishment of basinal calcareous organic-rich mudstone deposits (Unit 3) 

draping across late syn-rift inherited rift topography of all the basins (Catán-Lil, 

Chacaico, Chachil, La Jardinera) (Fig. 5.30). Stratal geometries are mainly 

characterized by further onlap of late syn-rift deposits, and directly onto granitic 

basement and Precuyano Cycle syn-rift volcanic footwalls, with gentle wedging 

and dipping into the hangingwall and passive onlap fill pattern (Fig. 5.30). Given 

the lack of indicator of major normal faulting or tectonic activity in these mudstone 

deposits and their regional extent, early post-rift thermal subsidence associated 

with major marine flooding might explain this abrupt change of sedimentation 

pattern (Figs 5.25 and 5.26).  

Dominant accumulation of calcareous organic-rich mudstone suggests 

that the late syn-rift shallow-marine systems were drowned and mud-draped and 

promoted the cut-off of intrabasinal and extrabasinal sources associated with the 

cratonic basin margin (Fig. 5.30). This enhanced the underfilled character of 

deep-marine distal depocentres such as the Catán-Lil and Chachil Basin, which 

were already dominated by fine-grained clastic or carbonate sedimentation 

during the late syn-rift (Figs 5.28 and 5.29). The starved evolution of the studied 

basins permitted to record the effects of differential compaction of buried volcano-

sedimentary deposits across fault-block highs which enhanced the inherited rift 

topography during the early post-rift (e.g Cristallini et al., 2006) (cf.Chapter 4). A 

range of fluid flow features are also recorded in that unit, including methane seeps 

associated with stromatholithic bioherms in the Chacaico Basin (cf. Gómez-

Pérez, 2003) (Fig. 5.30). The seepages might have formed with migration of 

deep-seated overpressured basinal fluids through rift faults, either from crustal 

magmatic sources and/or with a thermogenic-biogenic origin related to 

hydrocarbon expulsion during early burial (Gómez-Pérez, 2003). 

 

The renewed late Early Toarcian extrabasinal sand supply from the Early 

Andean volcanic island arc basin margin permitted the development of two sand-

rich intraslope fans (J1.2 and J2.1) (Unit 4), which developed as axial systems 

with sediment routeing by inherited rift topography (Figs 5.31, 5.32 and 5.33). 

This permitted the early post-rift evolution of underfilled rift depocentres into 
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sediment-balanced and overfilled depocentres like the Eastern Catán-Lil, 

Jardinera and Chachil Basin (Figs 5.25 and 5.26). In contrast, sand-starvation 

and mudstone deposition prevailed in the Chacaico and Western Catán-Lil 

Basin.The evolution of sedimentation in the Chacaico Basin also shows that basin 

margin-attached deltaic systems that established during the late syn-rift do not 

always sustain a stable connection with the hinterland and form sediment 

pathways into the early post-rift (Prosser, 1993; Alves et al., 2003; Seidler et al., 

2004; McArthur et al., 2016).  

The intraslope fan (J1.2) developed as part of a low-gradient ramp-type 

system flanking the low-relief Early Andean volcanic island arc (Fig. 5.31). The 

first precursor lobe complexes of this intraslope fan were trapped in depressions 

of mud-draped inherited topography in the Eastern Catán-Lil Basin, whereas 

other depocentres underwent sand-starvation. Substantial confinement resulted 

in thinning and pinchout at lobe complex margins, with common post-depositional 

remobilization and injection close to intrabasinal relief (Fig. 5.31). These relatively 

small lobe complexes form low net: gross successions of mainly matrix-rich 

sandstone, and record aggradation and retrogradation of the most distal part of 

a low-gradient ramp-type system (Fig. 5.31). The subsequent renewed 

progradation of that intraslope fan was recorded with deposition of lobe 

complexes that formed high to moderate net: gross successions of mainly matrix-

poor sandstone, which represent the proximal part of the low-gradient ramp-type 

system (Fig. 5.32). These larger lobe complexes progressively levelled the 

remaining intrabasinal relief, with depocentre widening during infill. This phase is 

characterized by initial progradation and aggradation of lobe complexes with 

compensational stacking, until backstepping of the system and shut down of sand 

supply. Preferential stacking of lobe complexes occurred in accommodation 

inherited along an interbasinal horst between the Chacaico and Eastern Catán-

Lil Basin, where the largest accommodation was available (Fig. 5.32). If 

intrabasinal topography was levelled in the Eastern Catán-Lil Basin and permitted 

compensational stacking of lobe complexes (J1.2), interbasinal horsts bounding 

the basin induced some confinement recorded by thinning with convergent onlap 

near the margins of lobe complexes (Fig. 5.22). These lobe complexes deposited 

in a weakly confined setting, with flows interacting with subtle seabed topography 

that resulted in the development of a range of combined flow bedforms. 

Depocentre confinement by the interbasinal horst between the Chachil and 



 257  
 

Eastern Catán-Lil Basin resulted in overspilling of dilute flows and accumulation 

of lobe complexes fringes in the downdip outboard and formerly sand-starved 

Chachil Basin (Fig. 5.32). In parallel, the first sand-rich flows reaching the 

formerly starved La Jardinera Basin promoted the development of small 

precursor lobe complexes trapped in topographic lows with substantial 

confinement. This also resulted in thinning and pinchout at lobe complex margins, 

with common post-depositional remobilization and injection close to intrabasinal 

relief (Fig. 5.32). 

The intraslope fan (J2.1) developed as part of a higher-gradient ramp-type 

system flanking a steeper flexural arc margin (Fig. 5.33). The intraslope fans 

prograded across healed topography of the Eastern Catán-Lil Basin and La 

Jardinera Basin with deposition of lobe complexes that formed low to moderate 

net: gross successions of matrix-rich sandstone (Fig. 5.33). Preferential stacking 

of lobe complexes occurred with aggradation and lateral compensation of the 

previous intraslope fan in the Eastern Catán-Lil Basin. The system prograded 

towards the most distal Chachil Basin with bypass and erosion across the Chachil 

interbasinal horst, as relief was levelled (Fig. 5.33). If intrabasinal topography was 

smoothed by deposition of the former intraslope fan (J1.2) in the Eastern Catán-

Lil Basin, enabling weak confinement and thinning with subtle onlap of lobe 

complex margins, this was not the case in the Chachil Basin. Compaction-

enhanced relief was long-lived in sand-starved distal depocentres such as the 

Chachil Basin, and influenced the development of intraslope fans with partial 

confinement by intrabasinal relief. This resulted in thinning with erosive pinchout 

at lobe complex margins, with widespread development of HEBs and debrites 

that form significant bed-scale heterogeneity, associated with a range of 

combined flow bedforms and scouring along lateral depocentre margins. These 

configurations are also marked by the development of large plurikilometric clastic 

sills close to intrabasinal relief (cf. Chapter 4) (Fig. 5.33).  

 

The thickest Early Toarcian-Early Aalenian accumulation of early post-rift 

intraslope fan deposits (J1.2-J2.1, Unit 4) occurred across a major granitic 

basement accommodation zone in the Eastern Catán-Lil Basin (up to 735 m thick) 

and metamorphic basement accommodation zone in the La Jardinera Basin (up 

to 650 m thick, Paim et al., 2008) (Figs 5.25 and 5.26). The thickness pattern of 

intraslope fans across these basins shows that the proximal depocentres, with 
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respect to the presumed extrabasinal volcanic arc-related source, were infilled 

first, enabling progressive depocentre widening with leveling of intrabasinal 

topography (Figs 5.31 and 5.32). Once the relief was healed, the intraslope fan 

could shift from proximal to more distal depocentres with sediment bypass and 

erosion across subtle remnant interbasinal relief that recorded the influence of 

compaction-enhanced topography in the formerly sand-starved distal 

depocentres such as in the Chachil Basin (Fig. 5.33). Consequently, a more 

reduced total sandstone thickness accumulated in the Chachil Basin (up to 330 

m thick). This highlights the role of inherited rift topography, from interbasinal pre-

rift basement highs such as the Chachil and Rincón del Polo horst borders or 

from compaction-enhanced intrabasinal syn-rift fault-block highs such as in the 

Chachil Basin (Figs 5.31, 5.32 and 5.33). The variety of early post-rift lobe 

complexes developed successively in each basin was mainly dependent upon 

the degree of confinement induced by inherited topography. The differential and 

diachronous sand supply in those basins led to a time transgressive healing of 

topography and therefore contemporaneous accumulation of lobe complexes 

with different characteristics (terminations, facies segregation, stacking patterns). 

Inherited slope topography might also have impacted flow routing pathways from 

source to sink as seen in other complex early post-rift rift basins (Modica and 

Brush, 2004; López-Gamundí and Barragan, 2012; Lohr and Underhill, 2015). 
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Figure 5.30: Palaeogeographic block diagram of the studied depocentres of the southwestern 
Neuquén Basin representing the Late-Early Toarcian configuration during onset of the early 

post-rift associated with maximum marine flooding at regional-scale and deposition of the Unit 
3. 
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Figure 5.31: Palaeogeographic block diagram of the studied depocentres of the southwestern 
Neuquén Basin representing the late Early Toarcian configuration during the early post-rift 
deposition of the low-gradient distal ramp lobe complexes recording initiation of the J1.2 

intraslope fan of Unit 4. 
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Figure 5.32: Palaeogeographic block diagram of the studied depocentres of the southwestern 
Neuquén Basin representing the early Late Toarcian configuration during the early post-rift 

deposition of the low-gradient proximal ramp lobe complexes recording basinwards 
progradation of the J1.2 intraslope fan of Unit 4. 
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Figure 5.33: Palaeogeographic block diagram of the studied depocentres of the southwestern 
Neuquén Basin representing the Late Toarcian configuration during the early post-rift deposition 
of the higher-gradient proximal ramp lobe complexes recording basinwards progradation of the 

J2.1 intraslope fan of Unit 4. 
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5.8.3. Effects of inherited rift topography during the syn- to post-rift 

transition 

 

The syn-to post-rift stratigraphic architecture and evolution of marine 

basin-fill patterns (discussed in the previous section) can be contrasted between 

adjacent basins (Figs 5.25 and 5.26). The Chacaico Basin-fill records the 

development of a balanced syn-rift continental volcanic to overfilled late syn-rift 

marine depocentre and evolution into an underfilled-starved early post-rift 

depocentre. The Western Catán-Lil basin-fill records development of a balanced 

to overfilled continental syn-rift volcanic to balanced late syn-rift marine 

depocentre and early post-rift sand-rich depocentre. The Eastern Catán-Lil basin-

fill records development of an underfilled continental syn-rift volcanic to balanced 

late syn-rift marine depocentre, which evolves into an overfilled early post-rift 

sand-rich depocentre localized across a former accommodation zone between 

two basins. The Chachil basin-fill records the development of an overfilled syn-

rift continental volcanic and underfilled late syn-rift marine depocentre and 

evolution into a balanced early post-rift depocentre. The La Jardinera basin-fill 

records the development of an underfilled continental syn-rift volcanic and late 

syn-rift marine depocentre and evolution into an overfilled early post-rift 

depocentre. Therefore, the stratigraphic architecture of late syn-rift systems was 

clearly impacted by the inherited accommodation space and major basement 

footwall highs which acted as long-lived topographic barriers between basins. 

During the early post-rift, inherited rift topography was totally flooded, healed by 

mudstone and locally enhanced by compaction-related deformation. Intraslope 

relief exerted a continuous influence on the development of early post-rift sand-

rich systems, until the spatial linkage of these systems across individual basins 

(Figs 5.25 and 5.26).  

The differences of inherited basin accommodation and physiography, 

which conditioned the development of late syn-rift and early post-rift systems, 

were linked to variations in magma supply across volcanic syn-rift depocentres 

(e.g Muravchik et al., 2011; D’Elia et al., 2018). In addition, the syn-rift 

sedimentation and thickness pattern across basins of the study area were directly 

related with the orientation of their border faults with respect to the main 

extensional NE-SW stress field. Basins bounded by NNW-SSE striking faults 

formed the deepest basins, whether they remained underfilled (La Jardinera 
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Basin) or were balanced to overfilled (Catán-Lil and Chachil Basin) (Figs 5.25 

and 5.26). In contrast, basins bounded by WNW-SSE and E-W striking faults, 

which developed with reactivation of inherited E-W pre-rift structures oblique to 

the main extensional stress field, formed the shallowest basins (Chacaico Basin). 

Therefore the configuration and basin-fill patterns of rift basins and their spatial 

distribution was intimately related to local perturbation of the extensional stress 

field by pre-rift structures. The pre-rift structural template also dictated the 

organization of the main interbasin highs across the rift system, which acted as 

topographic barriers and had a long-lived influence on sedimentation and 

thickness distribution through rift evolution and controlled early post-rift intraslope 

fan development (Chachil horst border, Puesto Rincón del Polo-Piedra Santa, 

Rahue blocks) (Figs 5.25 and 5.26).  

The early post-rift depocentres can develop with a change of polarity 

(thickening towards the NE-NNE) compared to the syn-rift depocentres 

(thickening towards the S-SW) in the La Jardinera and Western Catán-Lil Basin, 

or can develop across former basement-cored accommodation zone as seen in 

the Eastern Catán-Lil Basin. At a broader scale, the distribution of early post-rift 

intraslope fans show the basins that formed basement accommodation zones 

during the syn-rift, therefore lacking significant accumulations of volcanic syn-rift 

deposits, formed ideal traps for subsequent early post-rift sandy depocentres 

(Figs 5.25 and 5.26). This is recorded by the early post-rift sand-starvation of the 

Chacaico Basin and Western Catán-Lil Basin, which accumulated the thickest 

volcanic syn-rift and late syn-rift deposits in their southwestern part. In contrast, 

the development of the thickest early post-rift intraslope fan successions occurred 

in the basins with reduced thickness of late syn-rift deposits including the Eastern 

Catán-Lil, La Jardinera and Chachil Basin (Fig. 5.26). Therefore, besides 

contrasting basin-fill and thickness patterns across basins, the syn-to post-rift 

transition is also associated with the migration and spatial offset of syn-rift versus 

early post-rift depocentres (Fig. 5.26).  

The stacking between syn-rift and post-rift depocentres observed at a 

regional-scale, with early post-rift sagging away from syn-rift depocentre axis, 

does not fit the uniform pure shear lithospheric stretching model (cf. McKenzie, 

1978). Instead, this reflects asymmetric thermal subsidence with respect to the 

locus of extension that has implications for the prediction of the distribution of 

early post-rift sandy depocentres in a back-arc setting.   
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5.8.4. Early post-rift depositional system 

 

The early post-rift development of intraslope fans at a regional-scale in the 

study area occurred with coeval growth of the Early Andean volcanic island arc 

system that formed the southeastern basin margin (Figs 5.31, 5.32, 5.33). This 

might have promoted the development of a proto-shelf lacking a shelf-break and 

low-gradient slope dissected by gullies enabling sediment bypass, as delta-fed 

submarine ramp fan systems (Heller and Dickinson, 1985; Postma, 1990). Ramp-

type margins commonly bound moderately deep intracratonic basins, with a 

moderate slope gradient between the shelf edge and the proximal ramp bypass 

of sediment supplied from line- or multiple point-sources (Heller and Dickinson, 

1985; Postma, 1990; Surlyk and Noe-Nygaard, 2001; Eschard et al., 2004) (Figs 

5.31, 5.32, 5.33). This contrast with sedimentary shelves that have higher shelf-

to-basin relief with steep slope and well-defined shelf-break commonly 

associated with point-source sediment supply through major feeder channels and 

development of basin-floor fans (Reading and Richards, 1994). Equally, this 

contrasts with rift basins having a high-relief structural shelf promoting direct 

sediment bypass towards the basin-floor (Bell et al., 2008; Strachan et al., 2013). 

Sand supply and accumulation across the proximal ramp is dependent 

upon delta-front progradation and shelf width, which determines the timing for 

deltas to reach the margin and therefore for sediment supply or trapping across 

the shelf. In rift basins, sediment supply tend to be naturally enhanced by the 

limited capacity for sediment storage across narrow structural shelves and the 

high sediment yield expected from small catchment basins flanked by high-relief 

hinterlands (Blum and Hattier-Womack, 2009; Strachan et al., 2013). Therefore, 

thickening and coarsening stratigraphic evolution from the intraslope fans J1.2 to 

J2.1 could reflect an evolution from ramp-type to shelf-break type margin, as seen 

in the East Greenland rift systems (Surlyk and Noe-Nygaard, 2001). However, 

this scenario is unlikely during the Early Jurassic, given that the formation of a 

well-defined shelf-break in the southern Neuquén Basin occurs during the Middle 

Jurassic and along the cratonic southern basin margin. Shelf-break formation is 

recognized from subsurface data along the Huincul High showing the Aalenian-

Bathonian progradation of shelf edge deltas with development slope channels 

and canyons and basin-floor fans, as a consequence of a relative sea-level fall 

(Gómez Omil et al., 2002; Brinkworth et al., 2018; Loss et al., 2018).  



 266  
 

During the Early Jurassic, little to no sand reached the basin-floor as the 

shelf, slope and basin-floor segments were not connected, and therefore no Early 

Jurassic basin-floor fans could develop. This is well-recorded along the cratonic 

southern basin margin to the west of the Huincul high (Figs 5.1 and 5.2). Here, 

drowning of the deltaic system and lateral switching of the system eastwards 

along-strike on the cratonic southern basin margin induced sand starvation of the 

Chacaico Basin from the late Early Toarcian (Fig. 5.31, 5.32, 5.33). This Late 

Pliensbachian deltaic system was superseded by Early-Late Toarcian 

development of fan deltas nucleated onto a narrow structural shelf that fed 

multiple point-sourced intraslope fans trapped across a topographically complex 

slope, updip of the starved basin-floor (Gómez Omil et al., 2002; Pángaro et al., 

2009). Therefore the stratigraphic evolution recorded by intraslope fans of the 

Los Molles Fm. in the study area are more likely to reflect the “distal” signature of 

aggradation and progradation of deltaic systems developed along the Early 

Andean volcanic island arc basin margin (Figs 5.31, 5.32, 5.33). This evolution 

could also involve a maturation of routeing pathways across the slope which 

could be related with the change in lobe dimensions, sand: mud ratio, stacking 

patterns, facies distribution and development of bed-scale heterogeneity between 

the precursor distal ramp and proximal ramp lobe complexes (Figs 5.31, 5.32, 

5.33) (cf. Chapter 6). 

 

5.8.5. Early post-rift sediment supply 

 

The preservation of inherited rift topography and the subsidence rate 

during the syn- to post-rift transition mainly condition the potential for prevailing 

intrabasinal or extrabasinal source contribution and dominant development of 

transverse versus axial transport systems (Figs 5.27-5.33). In turn, sediment yield 

of intrabasinal sources with local fault-block degradation and/or extrabasinal 

supply from hinterland drainage systems determines the rate of healing inherited 

rift topography and early or late post-rift timing for the formation of sand-rich 

depocentres. Rapid bathymetric deepening (minimum 200-400 m water depth, cf. 

Gómez Omil et al., 2002; Gómez-Pérez et al., 2003) at the onset of the early post-

rift promoted the drowning and mud draping of inherited rift topography (Fig. 

5.30). Rift basins undergoing high subsidence rate and early post-rift mud draping 

of the inherited rift topography acted to prevent fault-block high degradation and 
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intrabasinal sediment supply (Lien, 2005; Soares et al., 2012) which could 

otherwise heal the inherited relief (Zachariah et al., 2009; Jarsve et al., 2014). In 

these conditions, sediment supply rate and accumulation of early post-rift fans in 

a given basin depends upon their distance from hinterland sources (proximal 

versus distal) (Figs 5.31, 5.32, 5.33). Therefore early post-rift sediment supply 

can require far-field tectonic plates which can induce uplift and source 

rejuvenation (Takano, 2002; Marin et al., 2017) and/or favourable eustatic sea-

level variation and/or productive hinterland climate (Alves et al., 2003; Yu et al., 

2013; Balázs et al., 2017).  

In the study area, the onset of early post-rift sediment supply is associated 

with deposition of a 400 m thick regressive sandy succession of slope rise and 

slope deposits making the bulk of the 2nd order sequence J2 is inferred to be 

driven by a major eustatic sea-level fall (Paim et al., 2008). Therefore the U-Pb 

ages obtained with the present work have shown that the sand supply is younger 

(late Early Toarcian) than previously supposed (Fig. 5.25) and eustatic control 

cannot be invoked to explain the cause of Early Jurassic sand supply. 

In the southern Neuquén Basin, the effects of transpressional fault 

reactivation are commonly invoked to explain the Middle to Late Jurassic sand 

supply with uplift and erosion along the Huincul High (Pángaro et al., 2009; 

Naipauer et al., 2012; Pujols et al., 2018). Again, in the study area sand supply 

started prior to the inversion premises and if sediment supply would have been 

sourced from the Huincul High area or the NE Patagonian Massif, one might 

expect sediment supply coming from the southeast of the basin. This would be 

consistent with a WNW-NW or NNW progradation of in Early Jurassic sand-rich 

systems of the Los Molles Fm., as documented in the subsurface along the 

Huincul High (Gómez Omil et al., 2002; Brinkworth et al., 2018). However, the 

NNE/NE palaeocurrent directions of sandy systems developed in the Catán-Lil 

and Chachil Basin (Fig. 5.4) and NE-ENE palaeocurrent in the La Jardinera Basin 

(cf. Burgess et al., 2000; Paim et al., 2011) indicate that sediment supply instead 

should come from a source located to the southwest, where the Early Andean 

volcanic arc developed (Figs 5.31, 5.32, 5.33). 

Early Jurassic volcanogenic sediment production promoted rapid 

sediment supply towards the NE (De la Cruz and Suárez, 1997) which could have 

controlled the late Early Toarcian development of early post-rift sand-rich systems 

of the Catán-Lil, Chachil Basin and La Jardinera in a transitional intra-arc to back-
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arc setting (Bermudez et al., 2002; Llambías et al., 2007). Sediment were likely 

sourced from Early Jurassic littoral calderas, subaqueous (50-100 m water depth) 

andesitic volcanoes, volcaniclastic aprons and deltaic systems that developed 

along the submerged Early Andean volcanic arc at ~30-50 km from the study 

area (De la Cruz and Suárez, 1997) (Figs 5.31, 5.32, 5.33). Volcanism, together 

with the warm humid climate since the early Late Toarcian (cf. Volkheimer et al., 

2008), might have provided suitable conditions to accumulate critical amounts of 

(volcanic-epiclastic) sands at the shelf edge bounding the volcanic arc. Volcanic 

arcs form topographically dynamic regions where magmatically-driven surface 

uplift and high sediment accumulation rates might have promoted gravitational 

instabilities. Gravitational resedimentation across the slope might have resulted 

from autogenic volcanic-driven eruptions, hydrothermalism, subduction-induced 

earthquakes and surface uplift, and allogenic factors related to and storm waves 

and/or enhanced climatic erosion and relative sea-level changes (De la Cruz and 

Suárez, 1997; Manville et al., 2009; Shumaker et al., 2018; Clare et al., 2018).  

Given the NNE-NE progradation of early post-rift sandy systems of the Los 

Molles Fm., with Early Jurassic sediment supply derived from the westerly-

located Early Andean volcanic arc, and the conspicuous lack of shelf-break until 

the Middle Jurassic, it seems counter-intuitive to interpret them as basin-floor 

deposits genetically related to a NNW-NW prograding shelf-break system that 

developed along the Huincul High (cf. Vann, 2013; Tudor, 2014). Therefore, the 

highlighted characteristics, stratigraphic architecture and age of Early Jurassic 

intraslope fans of the Los Molles Fm. outcropping in the study area, including the 

Catán-Lil and Chachil but also La Jardinera Basin (cf. Paim et al., 2011), warns 

against the extrapolation of these facies models for subsurface reservoir 

assessment of Middle Jurassic basin-floor fans (e.g Loss et al., 2018). 
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5.9. Conclusion 

 

This study demonstrates the variability of the syn-to post-rift signature 

recorded by the stratigraphic architecture and evolution of marine basin-fill 

patterns at a regional-scale in the southwestern Neuquén Basin, This is well-

recorded by the contrasted tectono-stratigraphic development of two exhumed 

adjacent marine rift basins (Chacaico and Eastern Catán-Lil) which has been 

constrained with new U-Pb SHRIMP zircon ages in the Los Molles Formation. 

The late syn-rift is recorded by the development of a transgressive sequence 

culminating with major marine flooding, which shows a complex distribution of 

depositional environments and contrasted retrogradational or aggradational to 

progradational sedimentation patterns, with changes in stratigraphic architecture 

across rift basins. The early post-rift is mainly recorded by a regressive sequence, 

with progradation of ramp-type sandy system since the late Early Toarcian. This 

lead to diachronous development of intraslope fans that consist into series of lobe 

complexes progressively healing the inherited topography from proximal to distal 

basins.  

The syn-to post-rift transition was associated with a change in shelf-slope 

physiography and source, with transition from intrabasinal and extrabasinal, to 

exclusively extrabasinal sediment supply, and a change in the mode of sediment 

dispersal from dominantly transverse to axial transport systems. The local 

intrabasinal and extrabasinal sources that fed transverse systems during the late 

syn-rift were deactivated due to mud-draping associated with major marine 

flooding during onset of the early post-rift. During the early post-rift, renewed 

extrabasinal sediment supply is interpreted as a distal signal of volcanogenic 

sediment production, and reworking and supply from deltaic systems developed 

along the narrow shelf that flanked the back-arc side of the Early Andean 

magmatic arc.  

At regional-scale, differences of tectono-stratigraphy and basin-fill patterns 

result from the effects of inherited rift topography and accommodation space on 

the successive development of syn-rift, late syn-rift and early post-rift 

depocentres. This is well-recorded by the compensational thickness pattern (i.e. 

the thickest early post-rift depocentres stack above the thinnest syn-rift 

depocentres) and an individual change of polarity (i.e. spatial shift of the late syn-

rift versus early post-rift depocentre axis) of late syn-rift and early post-rift 
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depocentres in the Eastern and Western Catán-Lil, Chacaico, Chachil and La 

Jardinera basins, Pre-rift inherited structures also exerted a long-lived influence 

on sedimentation that controlled the distribution, geometry, and evolution of late 

syn-rift and early post-rift depocentres. Finally, local relief inherited from rift 

topography and/or locally enhanced by compaction-related deformation, played 

a key role in the distribution and types of early post-rift lobe complexes, which 

developed through levelling of topography and timing of linkage of intraslope fan 

sandy depocentres across basins. Lobe complexes can show variable 

characteristics (dimensions, termination style, stacking patterns, facies) across 

depocentres, depending on the topographic confinement and interactions of flows 

with intra- and interbasinal reliefs at time of deposition.  

This study highlights the effects of rapid physiographic modification of rift 

topography through rift evolution, of pre-rift inheritance and volcanism on the 

stratigraphic architecture of the syn- to post-rift transition, from individual basin-

fill patterns to depocentre migration at regional-scale. Outcomes on early post-rift 

lobe complexes which developed through levelling of topography can be used to 

predict the distribution pattern and characteristics of seismic-scale analog 

intraslope systems developed with variable topographic confinement.  
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Chapter 6 Textural and compositional analysis of sandstone in 

the Early Jurassic Los Molles Formation  

 

6.1. Introduction 

 

Compositional and textural maturity of sediments is a function of the type of 

source material, residence time and weathering in the drainage basin, and the 

system efficiency for physical sorting and partitioning of grains from source to 

sink, according to autogenic (e.g., provenance mixing, sedimentary and hydraulic 

processes) and allogenic controls (e.g., tectonism, eustasy, volcanism). 

Sandstone composition and textural characteristics can be a useful tool to identify 

changes in provenance and palaeogeographic setting. In a rift setting, small 

catchment basins (<100 km long) are flanked by mountainous hinterlands 

associated with high sediment yield and low storage potential (e.g Millimann and 

Syvitski 1992; Castelltort et al., 2004; Blum and Hattier-Womack, 2009) that 

promote extrabasinal sediment supply and inherited relief can form intrabasinal 

sediment sources. In rift basins, the distance from source areas and slope 

physiography control sediment supply or starvation, and routing or storage of 

sediment in time and space, which can be more challenging to predict when 

associated with active volcanism (Marsaglia et al., 2016; Shumaker et al., 2018).  

The Neuquén Basin is bounded to the west by a volcanic arc and to the south 

and east by cratonic blocks. This makes it an ideal place to document detrital 

mineralogy and textural characteristics in relation to stratigraphic units (e.g 

Garzanti, 1991; Ingersoll and Cavazza, 1991; Armorosi and Zuffa, 2011; Ciccioli 

et al., 2014; Tentori et al., 2016) and to investigate changes in the provenance of 

late syn-rift and early post-rift sandstone. In this context, understanding sediment 

source areas, dispersal patterns and depositional processes which determine 

sediment composition and textural and mineralogical maturity, is important to 

predict temporal and spatial changes in the quality of reservoir sandstones. 

Additionally, characteristics of early post-rift lobe complexes are poorly known, 

mainly due to the paucity of exhumed examples and resolution limitations of 

subsurface examples (Argent, 2000; Fugelli and Olsen, 2007; Southern et al., 

2017; Dodd et al., 2019). Therefore, two intraslope fans of the Los Molles Fm. 
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are investigated to document differences in petrofacies in relation with 

stratigraphic architecture and characteristics of lobe complexes (dimensions, 

termination style, stacking patterns, facies, combined flow bedforms and bed-

scale heterogeneity). 

 

6.2. Geological setting 

 

Intracontinental volcanic rifting of the Neuquén Basin occurred from Late 

Triassic to Early Jurassic, after a period of post-orogenic extension-transtension 

along the southwestern Gondwana margin, which formed syn-rift grabens and 

half-grabens filled with continental and lacustrine volcano-sedimentary 

successions (Vergani et al., 1995; Legarreta and Uliana, 1996; Franzese and 

Spalletti, 2001; Howell et al., 2005). The first marine incursion from the proto-

Pacific Ocean occurred since the Pliensbachian, with coeval growth of the Early 

Andean magmatic arc along the western margin of Gondwana (Riccardi, 1991; 

Viciente, 2005; Damborenea et al., 2013). This transgression was recorded with 

development of Early Jurassic and late syn-rift, carbonate and siliciclastic deltaic 

or fan-deltaic shallow-marine sedimentation in the southern Neuquén Basin 

(Gulisano and Gutiérrez Pleimling, 1995; De la Cruz and Suárez, 1997; Gómez 

Omil et al., 2002; Leanza et al., 2013; D’Elia et al., 2015).  

Marine flooding and bathymetric deepening with onset of thermal 

subsidence since the Early-Late Toarcian, promoted the linkage of isolated late 

syn-rift depocentres across inherited rift topography. This lead to the 

establishment of early post-rift deep-marine siliciclastic sedimentation along the 

southern margin of the Neuquén Basin, mainly represented by intraslope fans 

developed in an intra-arc to back-arc setting, with influence of inherited and/or 

compaction-enhanced intrabasinal topography. The investigated exhumed Early 

Jurassic marine depocentres (Chacaico, Eastern Catán-Lil and Chachil) in the 

southwestern part of the Neuquén Basin (Fig. 6.1) recorded the transition from 

shallow-marine late syn-rift deposits of the Chacaico and Chachil formations, to 

deep-marine early post-rift deposits of the Los Molles Formation (Fig. 6.2). The 

well-constrained Early Jurassic stratigraphic framework with ammonite and 

bivalve biostratigraphy, and U-Pb volcanic zircon ages (cf. Chapter 5), enables 

the petro-stratigraphic evolution of the compositional and textural characteristics 
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of sandstone of the Chacaico and Los Molles Fm. This permits to refine sediment 

provenance, sediment pathways and palaeogeographic setting and insights into 

the stratigraphic architecture and different characteristics of early post-rift 

intraslope fans hosted in the Los Molles Formation across several rift basins (Fig. 

6.2). 

The Early Jurassic transgression created a large marine embayment 

within the Neuquén Basin. The basin was bounded by a SSW-NNE oriented 

palaeocoastline formed by the Early Andean island arc system (De la Cruz and 

Suárez, 1997), a SW-NE oriented palaeocoastline along the Huincul High, an 

inherited structure from a suture zone between accreted Palaeozoic terranes 

(Silvestro and Zubiri, 2008) which bounded the North Patagonian Massif (Fig. 

6.1). Therefore, both the North Patagonian Massif, a late Palaeozoic 

metamorphic highland, and the western Coastal Cordillera and Subcordilleran 

batholith, which corresponds to the metamorphic basement and intrusive plutons 

of the Early Andean magmatic arc, formed the main crystalline basement sources 

in the southern Neuquén Basin (Rosenfeld and Eppinger, 1993; Burgess et al., 

2000). Other sources in this region include uplifted basement blocks of Permian 

igneous rocks (Choiyoi Cycle), syn-rift volcanic deposits of the Precuyano Cycle 

exhumed ~100 km south of the study area (Sanico formation including basaltic, 

andesitic, rhyolitic volcanic rocks), and Early Jurassic (177 and 189 Ma) silicic 

igneous rocks from the Chon Aike Province developed with intraplate extensional 

magmatism in the extra-Andean Patagonia (Naipauer et al., 2018). 
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Figure 6.1: Map of the Neuquén Basin showing the location of the study area (A) and the 
regional geological setting with location of the correlation panel across the Chacaico, Eastern 

Catán-Lil and Chachil basins (dark line AB). 
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Figure 6.2: Cross section showing the stratigraphic architecture across the three studied 
depocentres (see Chatper 4 and 5 for descritpions of units) which is detailed in fig. 6.3. 
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Figure 6.3: Correlation panel showing the stratigraphic framework across the three studied 
basins and the location of the sandstone sampled in lobe complexes which belong to J1.1, J1.2 

and J2.1 sequences See detailed location of logs in Chapter 4 and 5..  
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6.3. Methods 

 

This study uses 15 petrographic thin sections extracted from 15 different hand 

samples which location and names are indicated in vertical sections (Fig. 6.3 and 

Table 6.1) that were collected in three distinct stratigraphic units (J1.1, J1.2 and 

J2.1). The stratigraphic evolution of stratigraphic units is constrained by a 

correlation panel including 3 vertical sections in the Chacaico Basin, 7 vertical 

sections in the Eastern Catán-Lil Basin and 17 vertical sections in the Chachil 

Basin, forming a 40 km long panel (Fig. 6.3) (cf. Chapter 4 and 5). Facies analysis 

was conducted based on qualitative field observations (grain and clast 

composition, grain size and roundness, the ratio of grains to matrix, grading and 

sorting of deposits) and distribution of facies associations and stratigraphic 

architecture were defined for each stratigraphic unit. Thin sections are used to 

define the compositional and textural characteristics of sandstones, analyse 

petrofacies and interpret provenance.  

The thin section slices were cut vertically from base to top of the given 

samples and analysed at the Centre of Geological Investigations Laboratory 

(CIG) of the National University of La Plata, Argentina and at the University of 

Leeds, UK. Serial acquisition of digital images were taken at high magnification 

(4x) in plane (PPL) and cross polarized (XPL) transmitted light using a digital-

camera equipped microscope and processed with the Leica software. Digital 

images (0.5-0.8 cm large and 2-3 cm long) were acquired with high magnification 

given the distortion effect toward the edges of the frame at low magnification. The 

images were stitched with the Photoshop software into high-resolution 

photomosaic slices covering 1 - 1.5 cm2 areas on each thin sections. 

Photomozaic slices (PPL and XPL) were used to proceed to semi-automatic 

digital point counting with the JMicrovision V1.27 software Java™ (Roduit, 2008) 

(see also Ilyah, 2013; Rossi and Moussaoui, 2014) and simultaneous grain 

identification under the microscope.  

Percentage abundance of component grains were defined with 600 modal 

point counts per thin section, including intergranular space and framework grains, 

following the Gazzi-Dickinson method to minimize the dependence of modal 

composition on grain size Dickinson (1970). Samples were collected in the lower 

part of beds (except for two samples collected in the upper part of beds) to avoid 

distortion in the quantitative analysis of detrital modes due to modal variability 
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induced by size-density hydraulic sorting of minerals (Ingersoll et al., 1984; 

Garzanti and Vezzoli, 2003; Garzanti et al.; 2009). Additionally, most of the 

coarser grains in samples are monocrystalline and/or aphanitic (rare phaneritic 

grains), and therefore the compositional bias related to hydraulic segregation of 

the coarser-grained particles was reduced. 

For each slice, the 600 points counted were stochastically distributed across 

an aleatory grid with a minimum interpoint distance larger than the maximum 

grain size fraction to avoid counting the same grain twice (van der Plas and Tobi, 

1965). This number of point counts is twice the number of point counts required 

for a standard deviation of 5.5% or less (at the 95% confidence level) for any 

measured volumetric percentage of mineral or porosity components (Stanton and 

Wilson, 1994). Grains-size was qualitatively assessed using the Udden-

Wentworth standard grain-size scale defining sand as particles between 0.063 

and 2 mm, roundness/shape and sorting were assessed by visual comparison on 

digital image slices following Beard and Weyl (1973) (Table 6.1). 

Cement and matrix were counted separately, and grain types were 

classified according to several petrographic categories defined by Zuffa (1985) 

based on composition (carbonate versus non-carbonate) and spatial 

relationships (intrabasinal versus extrabasinal). Textural subdivision of 

metamorphic lithics follows (Garzanti and Vezzoli, 2003) and volcanic grains were 

categorized using criteria defined by Dickinson (1970) to help distinguish the 

relative proportion of mafic, intermediate, and felsic components, and their 

palaeovolcanic (epiclastic) or neovolcanic origin follows criteria of Critelli and 

Ingersoll (1995). Thin section staining for feldspar identification was not 

necessary as their good preservation permitted differentiation based on their 

twinning. Point-count categories are defined in Appendix 6-7-8, and recalculated 

parameters are shown in Table 6.2.  

Ternary diagrams are used to discriminate any compositional change or 

trend between the different sequences and to relate compositional signature to 

provenance source (stable craton, basement uplift, magmatic arc, recycled 

orogen). A range of regeneration modal diagrams with components characteristic 

of the main source areas are used to define petrofacies as sandstone of similar 

composition. These are defined with recalculated percentages of a range of 

different parameters and ratio of different grain types, which can highlight specific 

stratigraphic petrologic intervals (Dickinson and Rich, 1972). The recalculated 
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parameters are those of Dickinson (1970, 1985), Zuffa (1985), Critelli and Le Pera 

(1994) and Critelli and Ingersoll (1995).  

 

 

Table 6.1: Table showing the different textural characteristics of sandstone samples and their 
petrofacies. 
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Table 6.2: Table showing the recalculated parameters for ternary diagrams.   
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6.4. Stratigraphic units 

 

6.4.1. Characteristics of sandstone lobe complexes 

 

In the study area, the J1.1 sequence which belongs to the Chacaico Fm. 

corresponds to an Early-Late Pliensbachian shallow-marine shoal-water 

mouthbar-type delta-front system deposited with transgression during the Late 

Pliensbachian in the Chacaico depocentre (Figs 6.1, 6.2 and 6.3). The J1.2 and 

J2.1 sequences which belong to the Los Molles Fm. form two distinct intraslope 

fans that developed with normal regression of a deep-marine ramp-type system 

from the late Early Toarcian to Aalenian, in the Eastern Catán-Lil and Chachil 

depocentre (Figs 6.1, 6.2 and 6.3). The J1.2 sequence includes a lower and 

upper intraslope lobe complexes with different characteristics, interpreted 

respectively as distal and proximal ramp lobe deposits (cf. Chapter 5). The 

terminology used for lobe descriptions (lobe, lobe complex, fan) follows Prélat et 

al. (2009). 

 

J1.1 sequence Delta-front lobes 

 

Description 

 

The J1.1 sequence includes delta-front lobes of amalgamated (1.2-9 m 

thick, ~3.5 m thick) (Fig. 6.4) lens-shaped to tabular sandstone beds thinning with 

common convex-down tapering, which can present sandy heterolithic interbeds. 

Sandstone beds (0.2-1.2 m thick) are medium- to fine-grained, well to moderately 

sorted, and massive to weakly normally graded, with local basal inverse grading. 

Beds are structured with planar to undulatory and low-angle cross-laminations, 

isotropic and anisotropic hummocky bedforms, rare convex-down ripples with 

tangential foresets or symmetrical ripples. Beds commonly contain subrounded 

siltstone pebbles and bioclasts in their lower part, and have carbonaceous-rich 

upper part (mm- to cm-scale), locally with plant fragments and disturbed by soft 

sediment deformation. Beds have sharp or deformed (loaded) base, locally 

erosive and sharp bed tops. There is no bed-scale heterogeneity developed. 

These lobes stack into lobe complexes (~14.3 m thick) with a high amalgamation 

and high sand: mud ratio, and commonly form thickening-upward successions. 
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Figure 6.4: J1.1 delta-front lobes in the Chacaico Basin and inset showing massive to planar 
laminated sandstone with enrichment in carbonaceous fragments near bed top (inset). 

 

Interpretation 

 

Delta-front lobes characteristics suggest that they were deposited under 

lower and upper plane bed regime, by waning high-concentration flows generated 

with river floods (Wright et al., 1977; Orton and Reading, 1993; Turner and Tester, 

2006). Common soft sediment deformation and loading structures, together with 

important bed thickness and amalgamation, support high sedimentation rates. 

Hummocky structures, asymmetrical and symmetrical wave ripples record 

intermittent storm-wave reworking under combined unidirectional or pure 

oscillatory flow conditions (Arnott and Southard, 1989; Arnott, 1993; Dumas and 

Arnott, 2006) and frequent bypass of the finer-grained dilute part of flows in the 

prodelta. 
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J1.2 sequence Intraslope fan lobes 

 

Description: Lower J1.2 lobes  

 

The lower lobes of the J1.2 sequence (Fig. 6.5) correspond to laterally 

extensive (several kilometres) tabular sandstone beds rarely amalgamated (~2.5 

m thick) and often interbedded with subordinated mudstone. Sandstone beds 

(0.2-4.8 m thick) are medium- to fine-grained, poorly sorted, massive or crudely 

normally graded and matrix-rich. Beds contain deformed mudstone pebbles in 

their upper part, or throughout the entire bed, with rare current ripple and planar 

laminations toward bed top. Beds have sharp or rare erosive base and sharp top. 

Heterogeneity is matrix-scale, and bed-scale heterogeneity induced by chaotic 

muddy sandstone is not common (0.4 m thick). The lobes stack into lobe 

complexes (~32 m thick) traced over 1.5-4.5 km downdip, with low amalgamation 

and low sand: mud ratio, with a thinning- and fining-upward pattern or without any 

thickness trend. Lobe complex terminations show thinning with abrupt pinchout. 

 

 

Figure 6.5: J1.2 lower lobes, corresponding to medium- to fine-grained massive to planar 
laminated sandstone locally bearing deformed mudstone clasts. 

 

  



 286  
 

Interpretation Lower J1.2 lobes 

 

The lower lobes of the J1.2 sequence were mainly emplaced with high 

efficiency and high-concentration flows with dampened turbulence including clay-

rich transitional plug flows (Baas et al., 2009) and low strength sandy debris-flows 

(Talling et al., 2012), which collapsed. The lack of consistent stacking pattern, 

showing lobe-scale compensation and lobe complex-scale aggradation, in these 

low sand: mud ratio lower lobe complexes with low amalgamation and 

widespread matrix-scale bed heterogeneity, might represent the distal part of the 

intraslope fan system (cf. Chapter 5). Some seabed relief inducing relatively high 

confinement by intrabasinal relief and basin margins is suggested by the common 

abrupt pinchout lacking lateral thickness and grain-size trends and associated 

with clastic injectites (sills and dykes) at lobe complex margins (cf. Chapter 5). 

 

Description Upper J1.2 lobes 

 

The upper lobes of the J1.2 sequence (Fig. 6.6) correspond to laterally 

extensive (several kilometres) tabular to mounded sandstone beds amalgamated 

(~3 m thick) or interbedded with subordinated heterolithic strata. Sandstone beds 

(0.5-2.6 m thick) are coarse- to fine-grained, poorly to very poorly sorted, matrix-

poor, and normally graded and structured, or less commonly massive with clast-

rich bed tops. Beds commonly contain subrounded siltstone and deformed 

mudstone pebbles, bioclasts (belemnite, ammonites and shells). Carbonaceous-

rich material (mm- to cm-scale) is disseminated in laminations. Typically, beds 

are bipartite, including a massive lower division with outsized grains, locally with 

some stepped laminations, and either a muddier upper division enriched in 

carbonaceous material with planar laminations, or a finer-grained upper part with 

planar to sinusoidal and undulatory laminations associated with isotropic and 

anisotropic hummock-like bedforms, and/or current ripples or climbing current 

ripples. Dune-scale cross-stratification can also occur. Beds have sharp, loaded, 

or erosive scoured bases with basal clast-rich division (few metres thick, 10s m 

width). Bed tops are sharp or gradational into muddy siltstone. Bed-scale 

heterogeneity is developed locally, with occurrence clast-rich chaotic muddy 

sandstone beds (0.2-0.4 m thick) found at the base of lobe complexes. These 

lobes stack into lobe complexes (~24.5 m thick) with a high amalgamation and 
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high sand: mud ratio and often with well-defined thickening- and coarsening-

upwards, or thinning- and fining-upwards patterns. Lobe complex terminations 

show thinning and fining in convergent onlap, either with local development of 

bedforms near lateral lobe complex margins or with transition into matrix-rich 

sandstone near frontal lobe complex margins. 

 

Interpretation Upper J1.2 lobes 

The upper lobes of the J1.2 sequence were deposited by lower efficiency 

and stratified high-density sediment gravity flows with greater turbulence, 

commonly enabling significant traction and development of high sediment fallout 

rate features (sinusoidal laminations, climbing ripples, soft sediment deformation) 

(Lowe, 1982; Leclair and Arnott, 2005; Sumner et al., 2008). Less commonly 

deposits record the contribution of turbulence-enhanced transitional flows (Baas 

et al., 2009). The upper lobe complexes formed as a single and larger depocentre 

in the Eastern Catán-Lil basin across subdued intraslope topography after 

deposition of the precursor lower lobe complexes (cf. Chapter 5). The well-

defined stacking patterns show lobe-scale compensation and initial NNE lobe 

complex-scale progradation, followed by aggradation with slight compensation. 

The consistent stacking pattern in these high sand: mud ratio upper lobe 

complexes with high amalgamation, localised erosion in their axis, and 

segregation of bed-scale heterogeneity at the stratigraphic base of each lobe 

complex, might indicate the proximal part of the intraslope fan system (cf. Chapter 

5). The common convergent onlap associated with occurrence of a range of 

bedforms (HCS-like and climbing ripples) at lateral lobe complex margins or with 

increase of matrix-scale heterogeneity at frontal lobe complex margins, suggest 

moderate confinement by basin margins (cf. Chapter 5). 
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Figure 6.6: J1.2 upper lobes, corresponding to coarse- to fine-grained, normally graded 
sandstone with erosional base. 

 

J2.1 sequence Intraslope fan lobes 

 

Description J2.1 lobes 

 

The lobes of the J2.1 sequence (Fig. 6.7.) correspond to laterally extensive 

(several kilometres) tabular to mounded (pinch and swell) sandstone beds 

amalgamated (~1.5-5 m thick), or interbedded with subordinated heterolithic 

strata. Sandstone beds (0.3-1.2 m thick) are very coarse to medium- to fine-

grained, very poorly to poorly sorted, matrix-rich, and massive to crudely 

stratified, clast-rich or weakly normally graded with structured bed tops. Beds can 

show normal or inverse coarse-tail grading and common grain-size breaks. Beds 

can show planar to sinusoidal parallel laminations, current ripples, local dune-

scale cross-stratification, but also banding, convex-down ripples, isotropic and 

anisotropic HCS-like bedforms. Locally, planar laminations and ripples can be 

carbonaceous-rich (mm-scale) and armoured clasts and exotic bioclasts are also 

observed. Matrix-scale heterogeneity is common in thin-bedded sandy lobe fringe 

deposits. Bed-scale heterogeneity is well-developed in these lobes, with a range 

of thin (15-50 cm thick) to medium to thick (0.6-1 m thick) or thick (4-7 m thick) 

hybrid event beds (HEB), including massive, banded and chaotic muddy 

sandstone bearing abundant mudstone, sandstone and heterolithic clasts 
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(pebble to cobble-sized). HEB bed geometry is irregular, with common lateral 

facies changes, abrupt thinning with pinchout across <100 m. Beds have sharp 

or erosive bases (grooves) associated with scours (1.5-2 m deep, ~5 m long) and 

have sharp tops. Erosion and scouring is common both in heterolithic lobe fringe 

and sandy lobe axis deposits. These lobes stack into lobe complexes (~50-70 m 

thick) with moderate amalgamation, and low to moderate sand: mud ratio, with 

thickening- and coarsening-upward or thinning- and fining-upward patterns. Lobe 

complex terminations show thinning (but not fining) with erosive pinchout, 

associated with scouring and widespread hybrid event beds (HEB) and local 

combined flow bedform (HCS-like, convex-down ripples) near lateral lobe 

complex margins and gradual pinchout of HEB-rich thin-bedded sandstone that 

offset abrupt thick HEB pinchout near frontal lobe complex margins.  

 

 

Figure 6.7: J2.1 lobes, corresponding to coarse or very coarse-grained sandstone, massive or 
crudely graded, with abundant mudstone clasts. 

 

Interpretation J2.1 lobes 

 

The lobes of the J2.1 sequence were formed by flows with high sediment 

fallout rates that could suppress tractional processes in turbulence-modulated 

clay-laden transitional flows (Baas et al., 2011) and by high-density to 

hyperconcentrated density flows (Lowe, 1982). Hummock-like bedforms and 

convex-down ripple bedforms differ from true well sorted fine-grained HCS 
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emplaced in shallow-marine environment by oscillatory flows. These bedforms 

formed with traction-and-fallout beneath stratified high-density combined flows, 

with high sediment fallout rates enabling bedform aggradation in the upper-stage 

plane bed stability field and are associated with oscillatory combined flow 

component due to flow reflection and/or deflection (Tinterri, 2011).  

HEBs emplaced with a range of transient low to intermediate yield strength 

sandy debris-flows and associated turbulence-modulated transitional flows (Baas 

et al., 2016). The general abundance of deformed subangular to angular 

intrabasinal mudstone clasts in these deposits reflect substrate entrainment and 

flow transformation, which resulted in a range of HEBs. Stacking patterns show 

lobe-scale compensation and progradation, with N/NE lobe complex-scale 

progradation across the interbasin high between the Eastern Catán-Lil and 

Chachil basins. This was permitted by healing and levelling of inherited 

topography with deposition of the previous J1.2 intraslope fan (cf. Chapter 5). The 

J2.1 intraslope fan mainly consists into mudstone clast-rich coarse-grained 

sandstone lobes in the proximal Eastern Catán-Lil Basin. These facies are 

equivalent to HEB-rich finer-grained matrix-rich to matrix-poor sandstone lobes 

deposited downdip in the Chachil Basin, after bypass across seabed relief of the 

buried horst margin (Fig. 6.3).The erosive pinchout of these lobe complexes is 

associated with scouring and widespread hybrid event beds (HEB) and local 

combined flow bedform (HCS-like, convex-down ripples) at lateral lobe complex 

margins, and gradual pinchout of HEB-rich thin-bedded sandstone that offset 

abrupt thick HEB pinchout at frontal lobe complex margins. These termination 

styles indicate partial confinement by intrabasinal relief and basin margins (cf. 

Chapter 4).  
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6.4.2. Delta-front and intraslope fan sandstone petrofacies and textural 

characteristics 

 

For each sample collected from delta-front and intraslope fan sandstones, 

grain-size, sorting, grain shape and matrix content are provided in Table 6.1. Bias 

related to particle grain-size, sorting and composition dependence on facies 

(Garzanti et al., 2009) was monitored by collecting samples from the lower part 

of beds. Two samples were collected in the finer-grained upper part of beds (PS1-

1 and MaS1-5) and in the distal part of the system (TutS2a-1 and 2). 

Detrital modes or petrofacies were identified using standard diagram QtFL 

(Heller and Dickinson, 1985) and QmFLt diagrams (Folk et al., 1980) to 

emphasise sandstone compositional maturity based on the relative abundances 

of quartz, feldspar and lithic grains, and on LvLmLs diagram to identify the main 

lithic components (Fig. 6.8). On a QmFLt diagram, sandstones sampled in the 

Los Molles Fm. plot as feldspathic-litharenites (7 samples) with an average Qm-

F-Lt% = 33-19-47, and litharenites (8 samples) with an average Qm-F-Lt% = 37-

14-49 (Fig. 6.8). Using the refined QtFL diagram refined by Weltje (2006), 

deposits plot as lithoquartzoze arenites (6 samples) with an average Qt-F-L% = 

47-14-38, and quartzolithic arenites (9 samples) with an average Qt-F-L% = 38-

16-47 (Fig. 6.8). This shows that there is no major change in sandstone 

compositional maturity through the stratigraphy, apart from an increase in 

sandstone maturity distally in the J1.2 sequence in samples TutS2a-1 and 2, 

which are enriched in quartz (Fig. 6.8). Based on the textural definition scheme 

of Dott (1964) separating sandstones from wackes with a threshold of 15 % 

matrix, 5 samples are arenites as they have <15% clay matrix (average of 6% 

matrix) and 9 samples are wackes as they have between 17-35% clay matrix 

(average of 25%) (Table 6.1 and Fig. 6.9).  
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Figure 6.8: Samples distribution in standard diagram QtFL (Heller and Dickinson, 1985) and 
QmFLt diagrams (Folk et al., 1980) to emphasise sandstone compositional maturity based on 

the relative abundances of quartz, feldspar and lithic grains. Diagrams showing the proportions 
of different lithics including volcanic, metamorphic and sedimentary grains (LvLmLs), 

polycrystalline quartz, volcanic lithics and sedimentary and metamorphic lithics (Qp, Lv, Lsm) 
and the proportions of different types of volcanic lithics including felsitic, microlitic and vitric 

grains.  
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Figure 6.9: Diagram showing the relationships between grain-size and matrix content of 
sandstones. The sampled sandstone of the Los Molles Formation have relatively high matrix 
content in comparison to other “matrix-rich” examples from the literature, and are above the 

15% matrix threshold of Dott (1964) separating sandstones from wackes. Note that samples in 
the upper part of beds are not included. 

 
The J1.1 sequence in the Chacaico Basin include two samples (Fig. 6.10) 

collected in the lower part of beds and correspond both to litharenites, ranging 

from upper medium to upper fine grain-size sandstone, well- to moderately-sorted 

with subangular grains and with 1.8 and 19.1% of matrix content (Fig. 6.9). The 

J1.2 sequence includes six samples collected in the Eastern Catán-Lil Basin (Figs 

6.11, 6.12, 6.13). Four are feldspathic litharenites collected in the lower part of 

beds and range from lower coarse to upper medium-grained sandstone, poorly 

to very poorly sorted with subangular to subrounded grains and with 10.2 to 17.3 

% matrix content (MaS1-2, MaS1-3, MaS1-4) (Fig. 6.9), whereas for the sample 

collected in the distal part of the system sandstone is upper fine-grained, 

moderately sorted, with subangular grains and up to 26% matrix content (TutS2a-

1) (Fig. 6.9). 

The J1.2 sequence includes two litharenites that range from upper-lower 

fine-grained to upper very fine-grained sandstone, moderately sorted with 

subangular grains, and were collected in the distal part of the system (TutS2a-2) 

and in the upper part of a bed with up to 24.5% matrix content (MaS1-5). The 

J2.1 sequence includes seven samples, with two samples collected in the 
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Eastern Catán-Lil Basin (PS1b-1, 2) (Fig. 6.14) and five samples collected in the 

Chachil Basin (S5bisb-2, 3, 4, S8-1 and 2) (Figs 6.15 and 6.16). Three are 

feldspathic arenites collected in the lower part of beds, ranging from lower coarse 

to lower medium sandstone, poorly to moderately sorted, with subangular to 

angular grains and with 26.9 and 3.1 % matrix content (S5bisb-4, S8-1 and PS1b-

2) (Fig. 6.9). Four samples correspond to litharenites, with three collected in the 

lower part of beds that range from lower coarser to upper-lower medium-grained 

sandstone, moderately to poorly sorted with subangular grains, and with 21 to 

27.7 % matrix content (S5bisb-2, 3, S8-2) (Fig. 6.9). The litharenite sample 

collected in the upper part of bed (PS1b-1) (Fig. 6.14) corresponds to lower 

medium-upper fine-grained sandstone, moderately sorted with subrounded to 

angular grains and up to 11.4 % matrix content (Fig. 6.9). 

 

The finer-grained samples in the J1.1 and J1.2 sequence tend to be 

litharenites and the coarser-grained samples are felspathic litharenites, whereas 

in the J2.1 sequence the finer-grained samples are feldspathic litharenites and 

the coarser-grained samples are litharenites (Table 6.1). The finer-grained 

samples display a better sorting, but with angular to subangular grain roundness 

compared with the coarser-grained samples that are poorly to very poorly sorted 

with subangular to subrounded grains (Table 6.1). The coarser and outsized 

grains correspond to upper and lower coarse quartz (commonly monocrystalline) 

and microlitic or felsitic volcanic lithics. There is a slight difference in matrix 

content between the feldspathic litharenite (average matrix content ~18%) and 

litharenite petrofacies (average matrix content ~21.4%) when comparing samples 

collected in the lower part of beds and a control on grain-size depending on the 

proximal-distal stratigraphic position of samples (Table 6.1). 

 

The deltaic sandstones of the J1.1 sequence have modal medium grain 

size, well to moderate sorting with low matrix content averaging 10.4%, and equal 

cement proportion averaging 11.5%. The intraslope fan sandstone have a modal 

medium-coarse grain size and are poorly to very poorly sorted with variable, but 

overall higher matrix content (ranging from 10.2-35.3%). The sandstone of J1.2 

sequence have high matrix content averaging 18% and lower cement proportion 

averaging 12%, whereas sandstone of the J2.1 sequence are more matrix-rich 

averaging 27.2% with average of 16.5% cement (only samples showing both 
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matrix and cement and collected in the lower part of beds are considered in the 

average percentages for matter of comparison). These differences are not related 

to grain size change given that both sequences have similar modal grain-size and 

sorting, nor vary with the thickness of the sampled bed ranging from medium to 

thick beds (0.2-1.2 m thick for the compared samples) (Table 6.1). Moreover, the 

sampled sandstone and their host bed thickness patterns show that they do not 

necessarily correlate with reservoir quality and grain size or matrix content. 

 

 

Figure 6.10: Thin section with localisation of the sample in sandstone beds of the J1.1 delta-
front lobes in the Chacaico Basin, and photomosaic slices. Location of the imaged slice is 

shown on the thin section. 
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Figure 6.11: Thin section with localisation of the sample in sandstone beds of the J1.2 lower 
and upper lobes in the Eastern Catán-Lil Basin, and photomosaic slices. Location of the imaged 

slice is shown on the thin section. 
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Figure 6.12: Thin section with localisation of the sample in sandstone beds of the J1.2 upper 
lobes in the Eastern Catán-Lil Basin, and photomosaic slices. Location of the imaged slice is 

shown on the thin section.  
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Figure 6.13: Thin section with localisation of the sample in sandstone beds of the J1.2 upper 
lobes in the distal part of the system in the Eastern Catán-Lil Basin, and photomosaic slices. 

Location of the imaged slice is shown on the thin section. 
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Figure 6.14: Thin section with localisation of the sample in sandstone beds of the J2.1 lobes in 
the Eastern Catán-Lil Basin, and photomosaic slices. Location of the imaged slice is shown on 

the thin section. 
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Figure 6.15: Thin section with localisation of the sample in sandstone beds of the J2.1 lobes in 
the Chachil Basin, and photomosaic slices. Location of the imaged slice is shown on the thin 

section. 
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Figure 6.16: Thin section with localisation of the sample in sandstone beds of the J2.1 lobes in 
the Chachil Basin, and photomosaic slices. Location of the imaged slice is shown on the thin 

section. 
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6.4.3. Sandstone composition 

 

Grains 

 

 

Figure 6.17: Compositional pie charts showing the distribution of the main component 

grain classes in samples of the J1.1, J1.2 and J2.1 sequences (see percentages in Appendix 6-

7-8). 
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The sandstones are mainly composed of lithics and monocrystalline quartz 

(Qm ranges from 14.2-29 % of the total counted points in each sample (Table 

6.1)), which dominate over polycrystalline quartz (Qp ranges from 2.6-10 % of the 

total counted points in each sample (Table 6.1)) (Fig. 6.17). Monocrystalline 

quartz corresponds to subeuhedral angular to subrounded grains including the 

finest and coarsest grain sizes and can show straight or undulatory extinction 

(angle < 5 °) and less frequent occurrence of vesicles and partial resorption 

embayments (Figs 6.18 and 6.19). Polycrystalline quartz corresponds to 

subangular to subrounded grains, which can be unstrained and granular coarse 

crystalline quartz (<2-5 crystals) (53%) straight to curved intercrystal boundaries, 

or strained to foliated fine crystalline quartz (>3-5 crystals) (47%) with and 

crenulated sutured intercrystal boundaries that can show stylolites (percentages 

refer to total count of this class Table 6.1) (Figs 6.18 and 6.19). 

Monocrystalline components consist into individual grains or occur as 

phenocrysts or xenocrysts in lithic grains, dominated by monocrystalline quartz 

(mean Qm-K-P%Qm = 68), plagioclase feldspar (mean Qm-K-P%P = 27) and 

few potassium feldspar (mean Qm-K-P%K = 6) (Table 6.2) (Fig. 19). Feldspar 

plagioclase is the dominant feldspar as P/F ratio is comprised between 0.6 and 1 

(Table 6.2), with average ratio of 0.84 that outpaces the threshold ratio of 0.75 

used to define volcanic-derived sandstone (Dickinson, 1970). Plagioclase 

feldspar crystals form medium to coarse sized subangular grains with common 

polysynthetic twinning (albite) and microlites or laths in volcanic lithics with 

common simple twinning (sanidine) and can present sieve textures and 

replacement by calcite or sericitization (Pg-Fd ranges from 3.7-11 % of the total 

counted points in each sample). Potassium feldspar correspond to medium or 

fine tabular orthoclase crystals monocrystalline or with carlsbad twinning and 

common perthitic or less common myrmekite texture, and minor coarse 

microcline crystals with tartan twinning (K-feldspars ranges from 0.5-3.5% of the 

total counted points in each sample). 

 

Sandstone contain volcanic (LvLsLm%Lv ranges from 43-98%), 

sedimentary (mainly shale and siltstone) (LvLsLm%Ls, 4-45%) and metamorphic 

lithics (LvLsLm%Lm, 0-3.5%) (mean Lv-Ls-Lm% = 74-26-1) (Fig. 6.8). The ratio 

of total volcanic lithics to total lithics Lv/Lt ranges between 0.4 and 0.9 (averaging 

0.6) as they are the dominant types of lithic grains in sandstone (Lv ranges from 
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2.6-10 % of the total counted points in each sample). Volcanic lithics show a 

range of textures associated with different magma compositions, including as 

major components felsitic grains (Lv%Lvf ranges from 11-48%), microlitic grains 

(Lv%Lvm, 53-97%), lathwork grains (Lv%Lvl, 47-90%) and vitric grains (Lv%Lvv, 

0-2%) (mean Lvf- Lvm- Lvv% = 72.5-27-0.5) (Figs 20 and 21). Felsitic volcanic 

lithics are characterized by a felsophyric silicic groundmass of meso- to 

cryptocrystalline non-fibrous quartz (chert) commonly associated with siliceous 

recrystallization and bearing variable amount of meso- and phenocrysts (quartz, 

plagioclase), either showing granular (Lv%Lvf gr, 53-85%, averaging 68%) or 

seriate textures (Lv%Lvf se, 0.7-9.8%, averaging 3.8% in samples). Microlitic 

volcanic lithics are characterised by a variable amount of plagioclase microlites 

scattered in aphanitic devitrified groundmass, showing trachytic fluidal textures 

or pilotaxitic texture when microlites are interwoven without specific orientation 

(Lv%Lvmi pi-tra, 10-42%, averaging 22.7% in samples). Some volcanic grains 

can also show lathwork or hyalopilitic textures, with plagioclase phenocrysts and 

microlaths scattered in aphanitic devitrified or isotropic glassy groundmass 

(Lv%Lvmi lat-hya, 1-11%, averaging 5.3% in samples). Vitric and pumiceous 

volcanic lithics are scarce (Lv%Lvv-pu, 0-2.4%, averaging 0.5% in samples). 

Glass is often devitrified with common development of spherulitic and fibrous 

siliceous textures (with chalcedony) or locally preserved as yellowish-brownish 

aphanitic glassy grains. Pyroclastic grains can form brownish preserved juvenile 

pumices with irregular margins and tube vesicles or non-welded tuffaceous clasts 

with fine-grained ash matrix is often replaced by clay or cryptocrystalline chert 

with sericitization or siliciclization.  

Sedimentary and metamorphic lithics are found in less abundant 

proportions (Fig. 6.17) as Ls ranges from 0-13% and Lm ranges from 0.2-1% of 

the total counted points in each sample. Sedimentary lithic fragments include 

subrounded to subangular fine to coarse-sized grains of shale (ranging from 1.4-

15.8%, averaging 6.3% in samples) and siltstone (ranging from 0.4-1.7%, 

averaging 0.3% in samples), with dominant shale (95%) over siltstone grains 

(5%) (percentages refer to total count of this class) (Fig. 6.19). Metamorphic 

lithics mainly consist into subrounded medium grains of phyllite, aphanitic slate 

with preferential foliation, strained medium-grained gneiss and less common 

schist including muscovite and polycrystalline quartz (mean Lmsl-Lmphyl-Lmsch-

Lmgn % = 16.7-55.6-16.7-11.1) (Figs 6.18 and 6.21). 
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Organic matter ranges from 0.3-12.8% of the total counted points in each 

sample (Fig. 6.17). It includes dark brown to black phytoclasts in the form of lath-

shaped biostructured plant debris (with residual membraneous tissues and cell 

walls) (Fig. 6.21), opaque massive equant to blade shaped organic matter and 

brownish-orangey translucent amorphous flaky or speckled organic matter (Fig. 

6.19). Organic matter fragments are dominated by opaque structureless (46%) 

and structured phytoclasts (25%) over amorphous organic matter (29%) 

(percentages refer to total count of this class), and commonly degraded with 

oxidization associated with fine disseminated pyrite indicative of oxidizing 

conditions and distance form terrestrial source (Tyson, 1993). 

Minor framework grains include phyllosilicates and calciliths (Fig. 6.17). 

Phyllosilicates comprise micas (90%), biotite (6%) and detrital chlorite (4%) 

(percentages refer to total count of this class) and phyllosillicates range from 0.7-

6.4% of the total counted points in each sample (Fig. 6.18). Calciliths correspond 

to medium-grained subrounded to subangular intrabasinal carbonate grains, 

which mainly consist into large equant calcite crystals with simple twinning, 

granular sparitic calcite (>30 um) or microsparite (4-30 um) associated with shell 

bioclasts and calciliths ranges from 1-6.3% of the total counted points in each 

sample (Fig. 6.19). Accessory heavy minerals (Fig. 6.17) are mainly iron oxide 

opaque grains (potentially pyrite and chromite) and non-opaque minerals mostly 

zircons which together ranges from 0.2-5.3% of the total counted points in each 

sample (Fig. 6.18 and 6.19). 
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Figure 6.18: A-Example of MaS2 thin section showing quartz grains including monocrystalline 
non undulose (QmnU) and spherulitic (QSph) quartz with resorption embayments characteristic 
of volcanic rocks, muscovite (MS), feldspar with pertithe (KOp), plagioclase feldspar with 
polysynthetic twinning (Pg) and microlitic volcanic lithics with pilotaxitic texture (Lvmpi), felsitic 
volcanic lithics with granular texture (Lvfgr) and recrystallized devitrified pumice grains (Lvpu) with 
remnant shard walls. Note the cryptocrystalline cement and pseudomatrix around grains. B-
Example of PS1 thin section showing quartz grains monocrystalline non-undulose (Qmnu) and 
undulose (QmU) and polycrystalline (Qp) with sutured internal boundaries, muscovite (Ms), zircon 
crystal (Zr), metamorphic lithic (Lmg), plagioclase feldspar (Pg) locally with sericitized margins 
(Pgse), microlitic volcanic lithics including pilotaxitic texture (Lvmpi) and vitric fragment (Lvvgl), 
amorphous organic matter (Moam) and calcite crystals (CaC). Note the drusy calcite cement and 
dissolution replacement of feldspars with calcite. C- Example of MaS3 thin section showing quartz 
grains monocrystalline non-undulose (Qmnu) and polycrystalline (Qpf), plagioclase feldspar (Pg), 
muscovite (Ms), felsitic volcanic lithic with microcrystalline texture (Lvfmi) and extensive calcite 
cement. 
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Figure 6.19:A-Example of MaS3 thin section showing a fragment of pumice (Lvpu) with spherulitic 
devitrification preserving tube vesicles and recrystallized cryptocrystalline texture. Note the 
pseudomatrix. B-Example of MaS4 thin section showing a glassy volcanic lithic (Lvvgl) with typical 
ragged margins and felsitic fragment with granular texture (Lvfgr).C-Example of MaS4 thin section 
showing microlitic volcanic lithic with trachytic texture (Lvmtr) and devitrification texture of glassy 
fragment (Lvvgl).Note the drusy calcite cement.D-Example of MaS4 thin section showing 
microlitic volcanic lithic with lathwork (Lvml) and trachytic texture (Lvmtr) and felsitic volcanic lithic 
with recrystallized microcrystalline texture (Lvfmi). 
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Figure 6.20:A-Example of S5bisB2 thin section showing a fragment of structured organic matter. 
Note associated iron oxydes. B-Example of TutS1 thin section showing a fragment of pumice 
(Lvpu) with spherical devitrification with preserved tubes.C-Example of MaS2 thin section 
showing microlitic volcanic lithics with pilotaxitic texture (Lvmpi) including polycrystalline quartz 
(Qp) and euhedral feldspar phenocryst with a sieve texture with glass inclusions (Pgs), 
plagioclase crystal (Pg) and metamorphic lithic (Lmg). 
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Figure 6.21:A-Example of MaS1 thin section showing sedimentary lithic shale (Lsh), volcanic 
lithics with vitric (Lvv) and felsitic granular texture (Lvfgr), zircon (Zr), amorphous organic matter 
fragment (Moam) and extensive drusy calcite cement.B-Example of ChaS2 thin section showing 
subhedral plagioclase crystal fragment (Pg), quartz grain monocrystalline non-undulose (Qmnu), 
bioclast calcilith (Ca Bio), volcanic lithic with felsitic granular texture (Lvfgr), vitric amygdule (Lvv) 
and spherulitic vitroclastic texture of glassy volcanic fragment (Lvvgl). Note the extensive 
intergranular siliceous recrystallization and paucity of calcite cement.C-Example of MaS1 thin 
section showing myrmekite vermicular texture of plagioclase feldspar characteristic of plutonic 
rocks and dissolution replacement calcite.D-Example of PS1 thin section showing microcline 
potassium feldspar with tartan twinning present as oversized grains.E-Example of PS1 thin 
section showing quartz grain monocrystalline non undulose (QmnU), polycrystalline (Qpf), 
microlitic volcanic lithic with trachytic texture (Lvmtr), calcite crystals (CaC), muscovite (Ms), 
plagioclase feldspar (Pg). Note the clay rim type coating and dissolution features (arrows). 
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Matrix and cement 

 

Most of samples are texturally immature and matrix and/or cement 

framework supported (represent 22 to 52% of the total counted points in samples, 

averaging 32.8 %), (Fig. 6.17) owing to the abundance of subangular grains, poor 

sorting and non-uniformity of grain-size. Dominant point to tangential contacts 

between mechanically rigid grains, lacking straight-sutured contacts and stylolites 

associated with tight grain fabric and the occupation of the intergranular space 

with matrix and/or cement suggest early cementation and limited mechanical 

compaction. 

Clay matrix (2-35% of the total counted points in samples, averaging 18%) 

(Fig. 6.17) mainly consists into pseudomatrix of crushed and squeezed mudstone 

and devitrified volcanic grains that form primary matrix. Detrital intergranular 

epimatrix consists into cryptocrystalline silica and clay aggregates related to 

dissolution of the mudstone and devitrified volcanic clasts between other lithic 

grains (sensu Dickinson, 1970).  

Authigenic cement occluding primary intergranular porosity commonly 

consists into diagenetic microsparite and blocky sparry calcite (large single 

crystals), and minor occurrence of drusy calcite around some grains (2-44% of 

the total counted points in samples, averaging 17%). Less commonly 

cryptocrystalline and microcrystalline quartz cement occur (represent up to 9 % 

of the total counted points in only two samples) and scarce authigenic quartz 

overgrowths can be found. Secondary intragranular porosity formed with 

diagenetic alteration of chemically unstable grains includes feldspar grains and 

early cementation calcite filling, and abundant devitrification features in volcanic 

lithic grains with replacement by clay minerals, fibrous chalcedony and zeolite 

and meso- to crypto- and microcrystalline quartz. The presence of authigenic 

quartz is consistent with burial temperatures > 80° (Walderhaugh, 1994) which 

could reach between 175 and 200° in the study area and in subsurface of the 

southern Neuquén Basin (Suárez and González, 2018). 

 

6.5. Analysis of compositional stratigraphic trends  

 

Sandstone samples were plotted on standard QtFL, QmFLt and QmKP 

diagrams to emphasise provenance (Fig. 6.22 and Table 6.2). In the QtFL 
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provenance diagram (Dickinson et al., 1983), samples plot in the recycled 

orogenic field. In the QmFLt diagram (Dickinson et al., 1983), 5 samples plot in 

the transitional continental field (1 sample of the J1.1 sequence, 2 samples of the 

J1.2 sequence, 2 samples of the J2.1 sequence), 6 samples plot in the mixed 

field (1 sample of the J1.1 sequence, 2 samples of the J1.2 sequence, 3 samples 

of the J2.1 sequence) and 4 in the dissected arc field (2 samples of the J1.2 

sequence, 2 samples of the J2.1 sequence). In the QmKP provenance diagram 

(Dickinson and Suczek, 1979) detrital modes of all sequences are located in the 

transitional recycled orogen field.  

 

 

Figure 6.22: Standard provenance diagrams of QtFL and QmFLt to emphasise provenance 
(Dickinson, 1983). 

 

The ternary diagrams do not permit to highlight any major change of source 

and such detailed analysis must be complemented with bulk-sediment, multi-

mineral and single mineral analysis (Garzanti, 2016). The changes in proportions 

of types of quartz, feldspars, volcanic, metamorphic and sedimentary lithics 

permitted to identify several discrete changes of detrital composition within and 

across sequences. Therefore the changes of framework grains are analysed 

based on variations of average percentages calculated for each classes by 

sequence (Fig. 6.23) and based on comparative curves for the total of grains 

counted by samples in sequences (Fig. 6.24).  

Non-undulatory and unstrained monocrystalline quartz, which can be 

associated with extrusive igneous (basalt, andesite, rhyolite) and pyroclastic 

rocks (Blatt and Christie, 1963), is consistently found in larger proportions than 

other monocrystalline or polycrystalline quartz grains. Other monocrystalline 

quartz grains include grains with an undulatory extinction associated with 
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provenance from low-grade metamorphic rocks (Basu et al., 1975) and quartz 

grains with vesicles and partial resorption embayments associated with a 

volcanic origin. The significant stratigraphic diminution of monocrystalline quartz 

(average J1.1=27.3%, J1.2=19.1%, J2.1=19.2%) is mainly related to the 

decrease of non-undulatory quartz grains (average J1.1=19.21%, J1.2=15.77%, 

J2.1=13.72%) and of spherulitic volcanic quartz grains with vesicles (average 

J1.1=0.32%, J1.2=0.32%, J2.1=0.16%) (Figs 6.23 and 6.24).  

This evolution, is coeval with the increase of undulatory quartz (average 

J1.1=7.9%, J1.2=3.46%, J2.1=5.37%) and polycrystalline quartz (average 

J1.1=3.9%, J1.2=5.1%, J2.1=5.9%) (Figs 6.23 and 6.24). The abundance of non-

undulatory monocrystalline quartz as a framework grain, even if its proportions 

decreases stratigraphically, might be associated with recycling of volcanic rocks 

but given that these grains are often associated with second sedimentary cycle 

they should not be used solely to infer source rock (Blatt and Christie, 1963). 

However, its decrease is correlated with the decrease of spherulitic quartz and 

volcanic lithics (average J1.1=23.3%, J1.2=16.3%, J2.1=15.2%), suggesting 

recycling from volcanic source rock (Precuyano Cycle deposits) and might record 

a diminution of palaeovolcanic source rock contribution through time (Figs 6.23 

and 6.24).  

Undulatory and less stable polycrystalline quartz grains, which are more 

prone to mechanical breakdown can provide indication on the type of plutonic or 

metamorphic source rock, and their stratigraphic increase indicate enrichment in 

immature grains of primary sedimentary cycle. There is a stratigraphic increase 

of undulatory monocrystalline quartz and coarse-grained polycrystalline quartz 

(average J1.1=1.5%, J1.2=1.5%, J2.1=3.8%) over fine-grained strained 

polycrystalline quartz (average J1.1=2.37%, J1.2=2.69%, J2.1=2.85%) (Figs 

6.23 and 6.24). Both undulatory monocrystalline and coarse polycrystalline 

quartz might reflect a plutonic origin, whereas fine polycrystalline quartz is more 

likely to have a low- to medium-grade metamorphic origin (Blatt et al., 1980). 

Therefore, the stratigraphic evolution in immature quartz grain proportions should 

record an increase in plutonic source contribution, with a relative decrease of 

metamorphic source contribution. This could be related with variable proportions 

of metamorphic lithics (found in low proportions) from J1.2 to J2.1 (average 

J1.1=0.2%, J1.2=0.5%, J2.1=0.3%), mainly dominated by slate and phyllite 
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grains indicative of a low-grade metamorphic rock provenance (Figs 6.23 and 

6.24). 

 

Figure 6.23: Histogram showing the distribution of average percentages of component grain 
classes (see Appendix 6-7-8) for each sequence highlighting the compositional variability. 
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Figure 6.24: Composition curves of specific types of grains of component grain classes. 
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The stratigraphic increase of phyllosilicates (especially muscovite) (average 

J1.1=0.7%, J1.2=2.8%, J2.1=3.8%), which are virtually absent of the J1.1 

sequence and increase from J1.2 to J2.1 sequence, with undeformed or foliated 

aspect, should reflect a plutonic origin. The fragile nature of micas flakes could 

explain their destruction in a high-energy deltaic environment associated with the 

J1.1 sequence. However, the combined increase of coarse polycrystalline quartz, 

micas and occurrence of feldspar grains with intergrowth textures of quartz and 

feldspar (myrmekite, perthite) are characteristic of acid plutonic rocks, support 

the increase of plutonic source rock provenance. This is also consistent with the 

high proportions and stratigraphic increase of plagioclase feldspar (J1.1=7%, 

J1.2=8%, J2.1=8.2%), which could be associated with crystalline plutonic rocks 

or with acid to intermediate volcanic rocks. In contrast, the proportions of 

potassium feldspar, including microcline characteristic of upper crustal felsic 

plutonic rocks, tend to decrease stratigraphically (average J1.1=2.6%, 

J1.2=1.8%, J2.1=1.4%) and might reflect their propensity for chemical weathering 

at source (Figs 6.23 and 6.24). 

The proportion of felsitic volcanic lithics is large, but with a stratigraphic 

decrease from sequence J1.1 to J1.2 and J2.1 (average J1.1=17.3%, 

J1.2=11.7%, J2.1=11.1%) (Figs 6.23 and 6.24). In contrast, the microlitic volcanic 

lithics decrease moderately (average J1.1=6.5%, J1.2=4.5%, J2.1=4.2%) and 

vitric lithics, which are in minor proportions due to devitrification processes, show 

a slight increase (average J1.1=0%, J1.2=0.4%, J2.1=0.2%). The high 

proportions of felsitic volcanic lithics with granular textures (Fig. 6.24) suggest a 

main silicic volcanic source typical of dacite and rhyolite, whereas seriate textures 

indicate a subordinate intermediate volcanic source typical of dacite and andesite 

(Dickinson, 1970; Critelli and Ingersoll, 1995). This is consistent with dominance 

of microlitic volcanic grains with pilotaxitic and trachytic textures indicative of 

intermediate volcanic source typical of andesite, and subordinate lathwork and 

halopilitic textures, suggesting intermediate to basic volcanic source typical of 

andesite and basalt. The vitric volcanic grains and pyroclasts are absent from the 

J1.1 sequence and appear in the J1.2 and 2.1 sequences (Fig. 6.24). The 

remnant of yellowish-brownish, non-vesicular sideromelane glass reflects 

palagonitisation and permits to infer an intermediate to mafic magma chemistry 

characteristic of basalt and andesite (Marsaglia and Ingersoll, 1992). However, 

abundant devitrification and dissolution features affected most of the chemically 
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unstable pumice, tuffaceous and glassy vitric volcanic grains but also felsitic 

grains, with replacement by authigenic silicates and siliceous minerals (fibrous 

chalcedony or crypto- to microcrystalline chert). These processes reduced the 

proportions of volcanic lithics at the expense of metamorphosed volcanic grains 

and contributed to increase the proportion of authigenic epimatrix in sandstone. 

The paucity of fresh angular grain edges or fluidal morphologies (welded or 

banded textures, well-preserved cuspate or platy glass shard shapes) and 

preservation of minor broken vitric fragments (including palagonitic sideromelane 

glass), together with the tractive sedimentary structures and grading, attest of 

emplacement by cold flows and abrasion of volcanic grains with transport (Fisher 

and Schmincke, 1984). The heterogeneity of composition and grain-size of 

polymictic epiclastic volcanic grains, their normal alteration, subangular to 

subrounded grain morphology and similar grain-size as non-volcanic terrigenous 

grains points a dominant non-coeval origin, with erosion of volcanic bedrock 

(White and Houghton, 2006). 

The felsic components (colourless glass, monocrystalline quartz, felsitic 

grains) are found in major quantities in syn-rift deposits associated with bimodal 

magmatism (Marsaglia and et al., 1995) and could reflect recycling of bimodal 

palaeovolcanic deposits of the Precuyano Cycle (Bermudez et al., 2002; 

Muravchik et al., 2011; D’Elia et al., 2018). The high content of such acidic 

volcanic fragments, which has been recognized in sandstones the Los Molles 

Formation of the Chacaico Basin (J1.1 sequence) has been interpreted as 

sourced from the Marifil formation based on compatible zircon isotope signatures 

(Naipauer et al., 2018). These deposits formed the Chon Aike Igneous Province, 

which developed with intraplate magmatism in the extra-Andean Patagonia in the 

North Patagonian Massif ~100 km south of the study area (Naipauer et al., 2018). 

However, the relatively stable amount in microlitic volcanic lithics in sandstone 

precludes a purely felsic source and indicate admixed felsic and intermediate-

mafic composition provenance (Fig. 6.24). 

The composition of volcanic grains and their stratigraphic evolution could 

reflect erosion of bimodal volcanic products associated with subaerial felsic 

volcanic centres developed with extension across the dissected volcanic arc 

(Marsaglia et al., 1991). This would be consistent with supply from Early Jurassic 

deposits described across the Early Andean volcanic island arc including 

subaerial andesitic-dacitic volcanoes, which coexisted with intermediate-silicic 
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composition calderas located ~30 km west from the study area (e.g De la Cruz 

and Suárez, 1997). The presence of preserved angular vitric fragments (basaltic 

glass) and other pyroclastic particles suggest potential reworking of neovolcanic 

grains (Critelli and Ingersoll, 1995), which might be related to explosive arc 

magmatism (Marsaglia and Ingersoll, 1992). Additionally, the very low 

proportions of vitric grains might be underestimated due to devitrification and 

replacement by authigenic phases. Similarly, the high proportions of felsitic 

granular volcanic grains could be a product of post-burial devitrification of felsic 

glass and/or could reflect the sensitivity of mafic or vitric volcanic lithics to 

weathering and breaking during transport (Critelli et al., 2002). Therefore, the 

possibility that the high content in monocrystalline quartz and felsitic volcanic 

grains (especially with granular texture) (Fig. 6.24) could reflect the proximity to 

a felsic-dominated volcanic source bedrock is taken with caution here, as 

enrichment in felsic grains could be a function of weathering and transport or 

devitrification processes. 

The sandstones indicate a mixed source composition of volcanic and 

magmatic arc basement (metamorphic and granitic plutonic) consistent with the 

scatter of samples plotted across three different provenance fields in the QmFLt 

diagram (Fig. 6.22). The overprint of diagenetic alteration onto detrital 

composition is moderate and mainly consists of dissolution of chemically unstable 

grains (aphanitic volcanic and shale lithics), whereas the feldspar and micas 

crystals are often well preserved, meaning that the proportions of volcanic grains 

might be underestimated (Fig. 6.24). Additionally, the proportions of shale lithics 

also might be underestimated given that they were transformed into 

pseudomatrix with mechanical compaction. If included in the category of 

sedimentary lithics it would shift the provenance field of the sandstones to the 

transitional arc field, both in the QtFL and QmFLt diagrams (Fig. 6.22). The 

detailed analysis of component grains permitted to highlight mixing and 

overwhelming of volcanic source with increased plutonic, and minor metamorphic 

basement source contribution recorded from sequence J1.1 to J2.1, enabling to 

discuss a potential change of source provenance from J1.1 to J1.2-2.1 

sequences.  
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6.6. Discussion 

 

6.6.1. Source provenance  

 

The compositional modes identified in the three sequences J1.1, J1.2 and 

J2.1 of the Early Jurassic Los Molles Formation indicate high monocrystalline 

quartz, volcanic lithics (dominated by felsitic grains) and feldspar plagioclase 

content, with subordinate sedimentary lithics (shale and siltstone) and 

polycrystalline quartz (Figs 6.17 and 6.23). The sandstone are compositionally 

immature, including both high proportions of both stable monocrystalline quartz 

and microcrystalline felsitic volcanic lithics, and unstable aphanitic volcanic 

lithics, polycrystalline quartz, feldspars and micaceous crystals (Fig. 6.24). 

Sandstones are also texturally immature, with average matrix content in 

sequences ranging from 10 to 20%, with dominant subangular to angular grain 

shapes and poor to very poor sorting (Fig. 6.9 and Table 6.1). These 

characteristics, together with the presence of delicate amorphous organic matter 

and structured plant debris suggest a moderate physical grain abrasion during 

transport, and therefore relatively short transport distance from the source.  

The J1.1 sequence shows higher proportions of monocrystalline non-

undulatory and spherulitic quartz grains than the J1.2-2.1 sequences which have 

higher proportions of monocrystalline undulatory quartz and coarse 

polycrystalline quartz. This stratigraphic increase of immature grains is 

associated with an increase of phyllosilicates micaceous and feldspar grains with 

intergrowth textures from J1.1 to J1.2-J2.1 sequences. In addition, the J1.1 

shows higher amounts of felsitic over microlitic volcanic lithic grains and higher 

proportion of felsitic grains in comparison with J1.2-2.1 sequences which record 

a slight increase of vitric and pyroclastic volcanic lithic grains. This evolution might 

reflect a change of source from dominant bimodal palaeovolcanic syn-rift and 

metamorphic rocks of cratonic basement, with subordinate decrease of 

metamorphic rocks sourced material at the expense of acidic plutonic rocks of 

magmatic arc basement (Fig. 6.25). The depositional setting and more mature 

compositional and textural characteristics of the J1.1 sequence suggests 

sediment source from the North Patagonian Massif hinterland and development 

as part of a SW-NE oriented deltaic system along-strike the southern margin of 

the Neuquén Basin (cf. Gómez Omil et al., 2002) (Fig. 6.25). This is consistent 
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with the N-NW palaeocurrents recorded by delta-front deposits of the J1.1 

sequence and N-NE palaeocurrents recorded by intraslope fan deposits of the 

J1.2 and 2.1 sequences. In contrast, the immature compositional and textural 

characteristics of sandstone of the J1.2-2.1 sequences provide little support for a 

mature (secondary cycle) cratonic signature represented by metamorphic 

highlands of the North Patagonian Massif (cf. Rosenfeld and Eppinger, 1993; 

Burgess et al., 2000).  

The signature of basement source with a stratigraphic increase of 

immature grains (first sedimentary cycle) from sequence J1.1 to J1.2-2.1 and 

compositional trends should reflect a change of source. The J1.2-2.1 sequences 

would record sediment supply with denudation of the magmatic arc batholith, with 

progressive unroofing of plutonic arc roots as a result of subduction-triggered 

uplift and exhumation (Marsaglia and Ingersoll, 1992) (Fig. 6.25). The 

compositional immaturity of sandstones in J1.2-2.1 sequences indicate a 

relatively low degree of chemical weathering associated with a short residence 

time in the drainage basin, despite the development of a humid climate since the 

early Late Toarcian (Volkheimer et al., 2008) that could have promoted 

weathering of chemically unstable grains. This immaturity might be also related 

to low storage time of sediment on the shelf, with limited exposure to 

hydrodynamic processes of high-energy coastal environment, with coeval growth 

of a magmatic arc system and back-arc subsidence involving sediment transport 

from short watersheds. 

The different source provenances and depositional environments are 

consistent with enhanced preservation of organic matter in the intraslope fans of 

the J1.2-2.1 sequences rather than in the delta-front deposits of the J1.1 

sequence (average J1.1=1.1%, J1.2=4.4%, J2.1=2.3%) (Fig. 6.22). This could 

reflect the difference of depositional environment, as a function of oxygenation 

and sedimentation rate, consistent with high sediment supply rates and rapid 

burial after depositional under oxygen-poor and low-energy conditions in 

intraslope fans. Similarly, the increase of matrix content in sandstone from delta-

front to intraslope fan deposits (average J1.1=10.4%, J1.2=16%, J2.1=19.4%, 

including all samples by sequence) (Fig. 6.22) might reflect more intense 

reworking of grains and cleaning of sandstone in a higher energy environment for 

delta-front sandstone than for intraslope fan sandstone (Fig. 6.25). The overall 

stratigraphic increase of calcareous cement proportions in samples (average 
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J1.1=7.4%, J1.2=19%, J2.1=16.5%) could be related to the preservation or 

dissolution of carbonate intrabasinal grains (average J1.1=0.6%, J1.2=2.6%, 

J2.1=2.7%) (Fig. 6.22). There might also be a proximal-distal stratigraphic trend 

well recorded in the J1.2 sequence, which reveals a change of composition with 

selective transport and increase of terrestrial blade-shaped phytoclasts and 

decrease of polycrystalline quartz and shale grains (Fig. 6.24). This could reflect 

the higher buoyancy of organic matter fragments (Tyson, 1995) and the 

mechanical breakdown of fragile grains with longer transport distance recorded 

at sequence scale.  
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Figure 6.25: Palaeogeographic evolution maps showing the development of the J1.1 deltaic 
system and of the J1.2 and 2.1 intraslope fan system with their respective sediment sources and 
petrographic characteristics.  
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6.6.2. Implications for sediment supply from the Early Andean volcanic 

island arc margin 

 

 The two investigated intraslope fans (J1.2-2.1 sequences) of the Early 

Jurassic Los Molles Fm. consist into compositionaly and texturally immature 

sandstone (matrix-rich or matrix-poor) point to dominant deposition by relatively 

high efficiency, high-concentration flows respectively, with dampened turbulence 

(e.g clay-rich transitional plug flows and low strength sandy debris-flows) or with 

enhanced turbulence. The mud matrix content highlighted in sandstone lobes of 

the J1.2 (~18%) and J2.1 (~27.2%) sequences contrast with the sandstones 

described by Paim et al. (2008) in the La Jardinera depocentre (Fig. 6.1). The La 

Jardinera sandstones were described as having a clean texture and very fine-

grained sandy matrix lacking the silt and clay sediment fraction, but with abundant 

mudstone clasts. The lack of fine-grained sediment fraction has been interpreted 

to reflect flow separation at the mouth of distributary channels and deposition by 

poorly efficient flows (Paim et al., 2011). Instead, the sandstone characteristics 

support a weak flow capacity for sorting and flow ignition, consistent with 

deposition across a moderate to gentle slope in a ramp-type setting that lacked 

slope channels, which could segregate the fine sediment fraction through flow 

stripping and overspill. The lack or poorly developed feeder conduits across the 

slope also implied a reduced sediment transport distance and sediment storage 

across the slope.  

 Ramp-type basin margins tend to develop small-scale and shallow gullies 

at the shelf edge, which deepen and widen with increased sediment supply and/or 

flow volume and erosional strength of delta-front sourced flows (Surlyk and Noe-

Nygaard, 2001; Sanchez et al., 2012; Prélat et al., 2015). Flows could have 

initiated via gravitational resedimentation of deltaic deposits fringing the structural 

narrow shelf, which limited capacity for sediment storage and might have 

promoted accumulation of critical amounts of sand and enhanced sediment 

supply independently of relative sea-level change (Burgess and Hovius, 1998; 

Helland-Hansen et al., 2012; Strachan et al., 2013). In these conditions, sediment 

supply could occur with destabilization of coastal deposits accumulated with 

abruptly decelerating hyperpycnal flows at river-mouths, with sediment-laden 

surface river plumes exiting river-mouths with sediment settling and 

reconcentration, triggering dense turbulent underflows (Parsons et al., 2001; 
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Clare et al., 2016). None of the observed sandstone deposit indicates deposition 

by sustained flows with fluctuating waxing-waning behaviour, characteristic of 

direct river-fed hyperpycnal flows with exceptional sediment concentrations that 

can directly plunge downslope as they overcome the higher seawater density 

(Mulder et al., 2003).  

 Tectonic uplift and widening of the growing Early Andean volcanic island 

arc, with accumulation of several kilometre-thick volcaniclastic successions, 

might have permitted sediment supply of primary and reworked epiclastic or 

volcaniclastic material in Early Jurassic intra-arc and marginal arc basins (Fig. 

6.25). Submarine shelves and slopes bounding volcanic arcs are characterized 

by rapid accumulation rates of sediments with high excess pore-fluid pressures 

prone to gravitational resedimentation with frequent slumping and mass flows. 

Therefore, sediment failure could be induced with cyclic wave loading and erosion 

(Noda and Tuzino, 2007; Horikawa and Ito, 2009), earthquakes, dynamic 

topographic uplift, or collapse related to magma intrusion and extrusion and slope 

steepening with rapid aggradation of volcanic deposits (Schneider, 2000; Watt et 

al., 2014). This would have been combined with frequent subaqueous and 

subaerial eruptions of andesitic-dacitic volcanoes, which coexisted with 

intermediate-silicic calderas (e.g De la Cruz and Suárez, 1997).  

 The large volume of volcanic sediment supply during eruptions could 

generate eruption-fed pyroclastic density flows discharges into the sea and ash 

fallout (Cas and Wright, 1991). Syn- and post-eruptive weathering, erosion 

transport and reworking of volcanic sediments by deltaic systems might have 

promoted rapid accumulation and destabilization across the narrow shelf 

bounding the Early Andean volcanic arc at ~30-50 km from the study area (De la 

Cruz and Suárez, 1997) (Fig. 6.25). This could produce sediment gravity flows 

laden with reworked volcaniclastic material, which could carve slope gullies 

(Chiocci and Casalbore, 2011; Carey and Schneider, 2011). The rapid 

segregation of volcanic particles into sand and mud that forms cohesive matrix 

could enhance entrainment of slope material along with transport (Watt et al., 

2014). In these flows, the high-suspended clay content might have reduced the 

difference of density between interstitial water and fines and the coarser-grained 

particles, and played an important role in delaying settling velocities for coarse-

grained sediment fraction and increasing flow run-out distance (Gladstone et al., 

1998; Gardner et al., 2003; Al Ja'Aidi et al., 2004). 
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6.6.3. Stratigraphic architecture of intraslope fans of the Los Molles 

Formation 

 

6.6.4. Change recorded within an intraslope fan sequence (J1.2) 

 

The stratigraphic evolution from the lower distal ramp to upper proximal ramp 

lobe complexes recorded within intraslope fan J1.2 in the Eastern Catán-Lil Basin 

includes an increase of lobe complex dimensions and in sand: mud ratio and a 

change from unorganized stacking patterns to organized progradation and 

aggradation with lobe complex compensation (Fig. 6.3). This evolution reflects a 

change of deposition across an irregular to smoothed seabed topography, which 

permitted development of wider, longer and thinner lobe complexes. The 

differences in petrofacies and characteristics of lobe complexes (dimensions, 

termination style, stacking patterns, facies, combined flow bedforms and bed-

scale heterogeneity) which have been described are consistent with changes in 

stratigraphic architecture (Fig. 6.3). 

At lobe-scale, the stratigraphic increase in grain-size and bed thickness, 

and change in facies with decrease in detrital mud matrix content in sandstone 

suggest deposition with an increase of flow volume and decrease in flow 

efficiency from distal to proximal ramp lobes. A decrease in flow efficiency could 

be related to less erosive flow behaviour, which incorporated less muddy 

substrate material admixed as fine-grained particles in the flows, or to erosion of 

a more compact substrate incorporated into flows as durable clasts consistant 

with textural changes and variation of clast content from distal to proximal ramp 

lobes. Increase in flow volume would require an increase in sediment supply rate 

and/or decrease of flow run-out distance from their main sediment source. An 

increase in sediment supply rate could be driven by a change at source, with 

increase of catchment size or change of catchment bedrock type increasing 

erodibility and sediment flux, climate change increasing precipitation and erosion 

rates and/or increased volcanic sediment production (Leeder et al., 1998; Collier 

et al., 2000; Garzanti et al., 2001; Schneider et al., 2016). The similar composition 

modes in the J1.2 sequence do not support changes of source, and cannot be 

related to climatic change towards more humid conditions which occurred after 

deposition of the J1.2 sequence, in the Late Toarcian (Volkheimer et al., 2008).  
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A complementary aspect to consider is the maturation of sediment 

routeing pathways throughout intraslope fan development (unchannelized versus 

channelized flows), which could have both led to a decrease of flow efficiency 

and an increase of flow volume. Initial high efficiency unchannelized flows 

undergoing erratic routeing pathways and lengthening of conduits through time 

could explain the initial stage of intraslope fan development recorded by the dirty 

matrix-rich  lobe complexes of distal ramp, analogous to frontal or disconnected 

lobes from other systems (e.g. Gutiérrez Paredes et al., 2017; Shumaker et al., 

2018). These flows might have entrained an uncompacted fine-grained substrate, 

incorporated in flows as watery soft muddy substrate easily admixed into flows 

as clay flocs promoting flow cohesion and transformation (Baas et al., 2009) well-

recorded by the dirty lobe facies. Subsequent cleaner matrix-poor lobe 

complexes of the proximal ramp developed across a subdued seabed relief, with 

an increase of sediment supply rate which could reflect progressive 

channelization of flows through slope gullies and deposition proximal to the 

feeder channel-mouth until system retreat and abandonment.  

In ramp-type systems, sand supply and accumulation across the proximal 

ramp is dependent upon delta-front progradation and shelf width, and determines 

the timing for deltas to reach the margin and therefore for sediment supply or 

trapping across the shelf (Heller and Dickinson, 1985; Burchette and Wright, 

1992; Helland-Hansen, 2012). Therefore, the stratigraphic evolution recorded by 

the intraslope fan J1.2 would be consistent with the interpretation of vertical 

stacking of clean above dirty lobe complexes as a result of intraslope fan 

progradation, which might also reflect the distal signature of delta progradation at 

the shelf-edge along the Early Andean volcanic island arc basin margin (cf. 

Chapter 5). This evolution might involve a maturation of routeing pathways across 

the slope which might be related with the recorded variation of flow type and 

behaviour (efficiency, volume, stratification) with an increase in flow energy and 

capacity in the deposits from the precursor distal to proximal ramp lobe 

complexes. 
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6.6.5. Change recorded across intraslope fan sequences (J1.2-J2.1) 

 

Intraslope fans recorded the evolution of the system with influence of 

topography on the sediment partitioning, reflected in their stratigraphic 

architecture and facies.  

Relief interacted with flows inducing a certain confinement at lobe complex-

scale and acting as palaeogeographic barriers which controlled the timing for 

linkage of sandy depocentres across basins through time (Fig. 6.3). Inherited 

topography was an important control on individual lobe complex pinchout style, 

reflecting the development of each intraslope fan with stratigraphic decrease of 

confinement. This is well-recorded at scale of the J1.2 intraslope fan, by the 

change from abrupt pinchout with common clastic injectites characteristic of distal 

ramp lobe complex terminations, to convergent onlap with common lateral 

bedform development or frontal enrichment in matrix-rich sandstone 

characteristic of proximal ramp lobe complex terminations. In the J2.1 intraslope 

fan, lateral lobe complex margins are characterized by erosive pinchout with 

scouring, widespread HEBs and bedform development, whereas frontal lobe 

complex margins show a more gradual pinchout of HEB-rich thin-bedded 

sandstone that offset abrupt thick HEB pinchout (cf. Chapter 4). Therefore, 

differences in lobe complex dimensions and termination styles between the J1.2 

and J2.1 intraslope fans suggest development of the J2.1 intraslope fan with 

stronger confinement by intrabasinal relief and basin margins. This pattern is 

consistent with the overall evolution of sandy depocentre linkage across inherited 

rift basin topography (cf. Chapter 5).  

The progressive healing of intrabasinal topography of the Eastern Catán-Lil 

depocentre during deposition of the J1.2 intraslope fan promoted overspill, and 

subsequent bypass and progradation of the J2.1 intraslope fan from the Eastern 

Catán-Lil to the downdip Chachil basins. This is consistent with the stratigraphic 

facies changes at the scale of both J1.2 and J2.1 intraslope fans, with an 

evolution from dirty matrix-rich to cleaner matrix-poor sandstone and coarsening 

upwards trend, both associated with individual fan progradation. Additionally 

within the J2.1 intraslope fan, some proximal to distal differences apply as 

sandstone lobes in the proximal Eastern Catán-Lil Basin, tend to be coarser-

grained and with lower matrix content than the HEB-rich sandstone lobes 

deposited downdip in the Chachil Basin, after bypass across seabed relief. This 
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suggests that the stratigraphic distribution of bed-scale heterogeneity is 

associated with development of lobes across inherited intrabasinal relief until 

healing of topography, recorded both from base to top and from proximal to distal 

part of the J2.1 intraslope fan. 

 

Facies change is also observed at larger-scale across several depocentres 

from J1.2 to J2.1 intraslope fans, which record a marked coarsening of sediment 

grain size up to granule- and very coarse-outsized grains, and increase of 

mudstone clast content at the expense of siltstone clasts and bioclasts and in 

average matrix content in sandstone (~18% matrix content in J1.2 sequence and 

~27.2% matrix content in J2.1 sequence). Sediment composition and palaeoflows 

permitted to consider a potential source area to the southwest, along the volcanic 

arc which was bounded by fan-deltaic systems and volcaniclastic aprons (De la 

Cruz and Suárez, 1997) (Fig. 6.25). However, given the consistent composition 

of sediments, the increase in grain-size is unlikely to be driven by a change of 

bedrock lithology. Alternatively, this could have resulted from changes in climate 

towards more humid conditions during the early Late Toarcian, with increasing 

precipitation and erosion rates (Volkheimer et al., 2008), and/or with an increase 

in slope gradient favouring the transport of coarse-grained particles farther from 

the source (Strachan et al., 2013), which could have been triggered with 

enhanced subsidence and source uplift. An increase of slope gradient could be 

consistent with progressive effect of slope healing and aggradation-progradation 

of the system, until the development of a proper shelf-break during the Aalenian 

(cf. Brinkworth et al., 2018). Progressive slope steepening through time with the 

combined uplift and growth (widening) of the active magmatic arc, together with 

increase of adjacent back-arc subsidence, might have promoted progradation of 

the ramp-type system and the stratigraphic change observed from J1.2 to J2.1 

intraslope fan facies characteristics. 
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Conclusion 

 

The petro-stratigraphic evolution of the compositional and textural 

characteristics of Early Jurassic sandstone of the Chacaico and Los Molles Fm. 

and palaeocurrent constraints suggest different extrabasinal source contribution. 

The late syn-rift deltaic sandstone (Chacaico Fm.) were likely sourced from 

southeastern hinterland along the cratonic basin margin. In contrast, early post-

rift intraslope fans sandstone (Los Molles Fm.) might record a distal signal of arc-

related volcanogenic sediment production, with reworking and supply from 

multiple source ramp system along the southwestern narrow shelf flanking the 

Early Andean volcanic island arc. Petrographic work, although focused on 

provenance, permitted to identify a better potential reservoir quality for late syn-

rift deltaic sandstone sourced from the cratonic basin margin (North Patagonian 

Massif) than for early post-rift intraslope fan sandstone sourced from the 

magmatic arc basin margin. 

The two investigated intraslope fans consist into compositionaly and 

texturally immature sandstone (matrix-rich or matrix-poor) is consistent with their 

deposition in a ramp-type setting by relatively high efficiency, high-concentration 

flows with a weak flow capacity for sorting and flow ignition. The overall 

stratigraphic changes in individual facies and characteristics of lobe complexes 

(dimensions, termination style, facies, combined flow bedforms and bed-scale 

heterogeneity) in Early Jurassic intraslope fans of the Los Molles Fm. are not 

related to a change of source, but to their stratigraphic evolution with evolving 

topography. The stratigraphic evolution recorded by the intraslope fan J1.2 with 

vertical stacking of clean above dirty lobe complexes reflects intraslope fan 

progradation. Facies characteristics of distal ramp matrix-rich lobe complexes are 

associated with initial high efficiency unchannelized flows undergoing erratic 

routeing pathways across the slope. Characteristics of subsequent proximal ramp 

matrix-poor lobe complexes record progradation of the system with progressive 

channelization of flows through slope gullies and increase of sediment supply 

rate. The facies changes (increasing grain-size, bed-scale heterogeneity and 

matrix-scale heterogeneity) recorded from J1.2 to J2.1 intraslope fan is 

associated with progradation of the ramp-type system and healing of slope 

topography across basins. Progradation of the system is interpreted to reflect 



 329  
 

maturation of routeing pathways across the slope and progressive slope 

steepening through time promoted by the combined uplift and growth (widening) 

of the active Early Andean magmatic arc, together with increase of adjacent back-

arc subsidence.  

Finally, the distribution of bed-scale heterogeneity and termination style of 

lobe complex margins points to development of J1.2 and J2.1 fans with changing 

confinement and interactions of seabed relief with flows depending on deposition 

across underfilled or healed seabed topography. Therefore, the two intraslope 

fans, despite having similar composition and provenance, can show markedly 

different facies distributions across lobes and bed-scale heterogeneity 

development, and termination style at lobe complex margins. This have 

implications for predicting the types of stratigraphic traps and reservoir quality 

and can be used for analog early post-rift sandy systems developed across 

above-grade slopes inherited from rift basin physiography. 
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Chapter 7 Discussions and conclusions 

 

This study aimed to (i) refine and extend established models of 

sedimentation in marine rift basin-fills, discuss the interplay of controls during the 

syn- to post-rift transition, and (ii) develop models for early post-rift lobe 

complexes, from documenting the Early Jurassic stratigraphic record of the Los 

Molles Formation that is exhumed across several depocentres of the southern 

Neuqén Basin, Argentina. Here, a series of key over-arching questions are 

examined, integrating the work covered in chapters 4 to 6. 

 

7.1 What factors controlled the temporal and spatial variability of the syn- 

to post-rift transition sedimentation? 

 

7.1.1 Intrabasinal topography 

 

At the scale of the several depocentres studied in the southern Neuquén 

Basin, the detailed stratigraphic architecture, the distribution of interpreted 

depositional environments, and the stratigraphic evolution of sand-rich systems 

identified: (i) a late syn-rift delta-front setting related to the Huincul High shelf-

slope system (invetsigated in the Chacaicop Basin), and (ii) an early post-rift 

deep-marine slope setting as part of a ramp-type system (investigated in the 

Catán-Lil and Chachil Basin) (Fig. 7.1). The first system was developed obliquely 

or transverse to the dominant NW-SE orientation of rift structures, whereas the 

second one was axial to rift structures. Both systems highlight the influence of 

inherited topography at depocentre-scale on flow routeing and sediment 

dispersal and stacking patterns. At regional-scale inherited topography controlled 

the distribution of depocentres, and led to coarse-grained sediment starvation of 

some basins until the relief was completely healed, enabling the spatial linkage 

of sand-rich depocentres.  

The major structures that formed inherited relief correspond to pre-rift 

basement-cored structures that exerted an important control on flow routeing, 

and therefore late syn-rift and early post-rift sedimentation (cf. Chapter 4 and 5). 

Furthermore, the orientation of pre-rift structures with respect to the extensional 

stress field played an important role in the configuration and spatial distribution 
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of shallow versus deep rift basins (Chacaico versus Chachil or Catán-Lil basins). 

This impacted late syn-rift and early post-rift thickness led to contrasting basin-fill 

patterns (Fig. 7.1). Pre-rift structures played a key role providing long-lived 

inherited seabed relief as they formed preferential sites for differential compaction 

and related deformation (small-scale faulting, large-scale folding), although these 

processes could also occur across syn-rift faults bounding major intrabasinal 

highs (e.g., in the Chachil Basin).  

Rift topography controlled the late syn-rift juxtaposition of different 

contemporaneous depositional environments developed across an irregular 

topography, until major marine flooding. During the early post-rift, the effects of 

interbasin highs were recorded in the distribution and architecture of intraslope 

fan deposits, until the system could fill accommodation and heal the relief (cf. 

Chapter 5). This introduced the new notion that all early post-rift lobe systems of 

the Los Molles Formation did not develop synchronously in depocentres. 

Therefore inherited and/or enhanced topography from pre-rift structures largely 

influenced the distribution and progradation of intraslope fans, and the timing for 

spatial linkage of early post-rift depocentres across topography (Fig. 7.1). The 

orientation of the topographic relief with respect to the main direction of system 

progradation was key, as flow oblique to parallel relief could change flow 

pathways, whereas transverse relief could prevent sediment bypass downdip 

(Prather et al., 2003; Smith, 2004). 

Current rift basin models do not integrate the effects of topography on 

dominantly fine-grained sedimentation, which can control the distribution of 

prodelta, offshore, and basinal deposits having subtle, but crucial differences for 

the prediction of spatial source rock distribution (see later discussion on the 

“base" of the Los Molles Formation) but which also plays a major role in the 

development of deep-marine sand-rich systems. The present study helps to 

highlight these gaps in rift basin models, improving their accuracy in the prediction 

of fine-scale source rock distribution, bed-scale heterogeneity development and 

reservoir potential, and trap type (stratigraphic versus combined structural-

stratigraphic) across multiple adjacent depocentres. The integration of regional 

stratigraphy across several basins at a regional-scale demonstrates that the 

onset of the early post-rift occurs with major marine flooding (Fig. 7.1). In contrast 

with other marine rift basin models, this shows that basin starvation and 

bathymetric deepening is not the only signature of rift climax or late rift 
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sedimentation, and that onset of sand supply in a formerly starved rift basin 

should not be used as a characteristic signature of the immediate post-rift to 

interpret the syn-to post-rift transition boundary (Prosser, 1993; Ravnås and 

Steel, 1998). In rift basin models the development of large axial turbidite systems 

is often related to lingering of sediment supply from local intrasbasinal sources 

(e.g exposed footwall highs), in an early post-rift basin configuration analog to 

late syn-rift (e.g Zachariah et al., 2009; Jarsve et al., 2014; Henstra et al., 2016) 

(Fig. 7.1). Alternatively, when extrabasinal sources are active during the late syn-

rift, long-lived large drainage catchments permit to predict the location of 

subsequent early post-rift depocentres as they form inherited sources (Prosser, 

1993; Ravnås and Steel, 1998) (Fig. 7.1). In the study area, the development of 

early post-rift sandy depocentres occurs after drowning of intrabasinal sources 

and mud-drapping of intrabasinal reliefs, with onset of extrabasinal sediment 

supply from the magmatic arc. Basin margin-attached deltaic systems which 

formed the extrabasinal source established during the late syn-rift, are not 

sustaining a stable connection with depocentres during early post-rift. Increased 

back-arc subsidence might have promoted the lateral shift of deltaic source 

along-strike the cratonic basin margin towards the locus of minimal backarc 

subsidence away from the magmatic arc which resulted in the cut-off of 

extrabasinal cratonic source in the study area (Fig. 7.1). Therefore, evolution of 

rift basins in a back-arc setting involved a rapid spatial and temporal change of 

extrabasinal source contribution along-strike basin margins in relation to the 

development of the magmatic arc. 

The distribution of early post-rift sandy depocentres across 

accommodation zones formed by pre-rift inherited structures that segmented the 

syn-rift depocentres is offset from the locus of volcanic syn-rift and late syn-rift 

depocentres. The development of early post-rift depocentres is largely controlled 

by the inherited topography, leading to evolution of adjacent sand-starved 

underfilled and sand-supplied balance to overfilled rift basins. The stratigraphic 

variability of the syn- to post-rift transition and distribution of early post-rift sandy 

depocentres show that adjacent rift basins with similar climatic or tectonic 

conditions can develop contrasted basin-fill patterns (Fig. 7.1). This is mainly 

interpreted as a response to the physiographic evolution of rift basin topography 

through rift evolution, which is largely underemphasised in tectono-stratigraphic 
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rift basin models (Prosser, 1993; Gabrielsen et al., 1995; Ravnås and Steel, 1998, 

Gawthorpe and Leeder, 2000).  

 

 

Figure 7.1: Comparison of different syn- to post-rift transition characteristics with changing 
conditions of intrabasinal-extrabasinal sediment supply, position (proximal versus distal) with 
respect to basin margin and early post-rift subsidence. 

  



 335  
 

Study of the syn-to post-rift sedimentary record in the southern Neuquén 

Basin has shown that the changes in rift topography during decreased extension 

and onset of thermal subsidence, appear as the dominant controlling factor on 

the intrinsic variability of depositional systems . It is important to refine rift basin 

models, including the effects of topography on sediment gravity flow behaviour, 

and the generation or enhancement of relief due to early post-rift compaction-

related deformation, which might have different implications depending on the 

shallow- or deep-marine setting (Fig. 7.1). At a larger-scale, basin margin 

physiography and topographic relief controls sediment routeing and partitioning 

from the shelf, through the slope to the basin-floor. The changes of basin margin 

physiography also control the rate of transgression during the early post-rift 

(Veiga et al., 2013), and therefore the distribution and variability of coeval 

shallow- versus deep-marine systems along the basin margin. Therefore the 

early post-rift palaeogeographic evolution of the southern Neuquén Basin margin 

provides a unique case study to assess the effects of along-strike changes in 

basin margin physiography on the variability of depositional systems with 

transgression and regression, across variable slope gradients and with variable 

seabed relief.  

 

7.1.2 Sediment supply 

 

Another control on the record of the syn- to post-rift transition in rift basins 

is the inherited basin configuration, which conditions the potential for intrabasinal 

versus extrabasinal sediment supply and distance from the sediment source (Fig. 

7.1). This has consequences on the timing for healing of the inherited rift 

topography, and on the location of sand-rich deposits and sedimentological 

characteristics of these sand-rich deposits (long extrabasinal versus short 

intrabasinal transport distance).  

At the scale of single depocentres, study of the Early Jurassic stratigraphic 

record has shown that the syn- to post-rift transition can be marked by a change 

from intrabasinal to extrabasinal sediment supply (e.g., in Chachil and Catán-Lil 

basins; Chapters 5 and 6), whereas in other basins extrabasinal sediment supply 

starts earlier during the late syn-rift (Chacaico Basin; Chapter 5). The timing for 

extrabasinal sediment contribution across depocentres, even if a similar distance 

to the sediment source areas, is directly dependent on the inherited topography. 
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When sediment supply shuts down during the early post-rift, in the basin which 

received extrabasinal sand-supply during the late syn-rift, extrabasinal sediment 

supply reached in turn the basins which were formerly sand-starved during the 

late syn-rift. Therefore there was a reciprocal relationship across depocentres in 

the loci of sediment supply or sand-starvation (Fig. 7.1). This shows the 

complications related to the contribution of different extrabasinal sediment 

sources and routeing pathways in adjacent depocentres during the syn- to post-

rift transition, which would be difficult to predict without petrographic and 

palaeocurrent constraint. 

The switching from late syn-rift extrabasinal sediment supply to early post-

rift sand-starvation in the Chacaico depocentre correlates with the arrival of 

extrabasinal sand supply in the formerly sand-starved Catán-Lil, Chachil and La 

Jardinera depocentres. This change occurred after a major marine flooding event 

that is recognized at the scale of the southern Neuquén Basin margin (Gómez 

Omil et al., 2002; D’Elia et al., 2015). Major marine flooding also decreased early 

post-rift intrabasinal source contribution, as mud draping of rift topography 

deactivated intrabasinal fault-block sources in all the studied depocentres (Fig. 

7.1). Therefore, instead of generating intrabasinal sediment gravity flows during 

the syn-to post-rift transition (Zachariah et al., 2009; Jarsve et al., 2014), relief 

acted as topographic barriers for flows, and controlled the timing of sediment 

supply in a given depocentre.  

Established rift basin models consider inherited rift topography for its 

potential to form effective intrabasinal sources. However, in this case topography 

was covered and acted as a palaeogeographic barrier, which is poorly 

emphasised in these models despite the implications for the development of 

intraslope fans. Additionally, the direct application of predictive rift basin-fill 

models, which suggest the onset of extrabasinal sand supply as a characteristic 

signature of the immediate post-rift in numerous basins is risky (Prosser, 1993; 

Ravnås and Steel, 1998). Following this logic, both the Chacaico and the Los 

Molles Formation would be interpreted as early post-rift, based on the fact that 

they both record the onset of extrabasinal sediment supply, whereas the present 

study demonstrate that they developed diachronously. This argument has been 

used to place the syn- to post-rift transition boundary in the La Jardinera 

depocentre (Paim et al., 2008). In the absence of regional constraint on 

depocentre evolution, care should be taken when interpreting the syn-to post-rift 
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transition boundary in a single depocentre. The implications for late syn-rift versus 

early post-rift trap prediction in the subsurface, where little constraint is available 

or when deformation is of subseismic scale, are discussed further in detail. 

 

7.2 What are the characteristics of the syn-to post-rift transition signature? 

 

7.2.1 Depocentre-scale perspective 

 

In the studied depocentres in the southern Neuquén Basin (Chacaico, La 

Jardinera and Western Catán-Lil), the late syn-rift and early post-rift depocentres 

develop through migration and change of polarity (thickening towards the NE-

NNE) compared to the volcanic syn-rift depocentres (thickening towards the S-

SW). The early post-rift depocentres can also develop across former basement-

cored accommodation zones lacking (or with negligible) volcanic syn-rift strata, 

as seen in the Eastern Catán-Lil Basin (cf. Chapter 5).  

Late syn-rift strata onlaps or wedges towards basement and late syn-rift 

faults, showing internal discordances between successive packages due to syn-

depositional tilting and blind fault growth folding (cf. Chapter 5). Locally, some 

new fault networks could develop and dissect the volcanic deposits into the main 

hangingwall of some basins, changing the inherited volcanic syn-rift topographic 

configuration during the late syn-rift. This structural evolution differs from several 

rift basins in which late syn-rift extension is accommodated over fewer, but larger 

border faults, onto which strain should localise (Gawthorpe et al., 2003; 

Dorobeck, 2008).  

The early post-rift deposits onlap passively onto late syn-rift deposits and 

across basement footwall blocks, healing the inherited accommodation. They 

also show consistent dip away from the main basin border fault footwalls, with 

shallowing-upwards in stratal dips. Additionally, early post-rift strata can be 

affected by mesoscale (metre-scale) normal faults mostly located above 

basement highs interpreted as the effects of compaction-related deformation (cf. 

Chapter 4). Onset of the early post-rift with major marine flooding and siliciclastic 

starvation (recorded by Unit 3), induced a period of very slow accumulation rates. 

During this period the effects of differential compaction were recorded by 

thickness changes in mudstone (up to 100 m thick) across buried rift structures 

with local small-scale deformation as seen in the Chachil Basin (cf. Chapter 4). 
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Compaction-related deformation recorded in depocentres did not induce 

variations of depositional environment and sedimentation around basement highs 

(e.g. López-Gamundi and Barragan, 2012). This suggests that compaction-

induced deformation rates did not outpace thermal subsidence rates during the 

early post-rift. Instead, thermal subsidence rates might have been high during the 

early post-rift and could mask the effects of differential compaction (e.g. Doglioni 

et al., 1995, 1998; Morley, 2001; Cristallini et al., 2006). 

 

7.2.2 Basin-scale perspective 

 

This study has clarified and refined the spatial distribution and timing of 

subtle extension versus compaction-related features in the Early Jurassic 

stratigraphy of southern Neuquén Basin to better understand the syn- to post-rift 

transition record in the region (cf. Chapter 4 and 5). The spatial variability and 

stratigraphic architecture of depositional systems and basin-fill patterns highlight 

active fault-block tilting and fault growth folding during the Chachil and Chacaico 

formations (Unit 1 and 2A) and the base of the Los Molles Formation (Unit 2B). 

This implies that the late syn-rift lasted until the latest Pliensbachian, whereas 

onset of the early post-rift is recorded since the latest Pliensbachian-earliest 

Toarcian, with a major marine flooding event. These findings differ from previous 

interpretations that suggested the onset of early post-rift would be represented 

by a marine transgression and deposition of a carbonate system represented by 

the Chachil Formation, marking a large-scale event recorded from north to south 

at the scale of the Neuquén Basin (Leanza et al., 2013). The first marine 

transgression of the Neuquén Basin is diachronous from north to south. This 

should not be taken as the syn-to post-rift transition marker as it might reflect the 

diachronous development of the Early Andean magmatic arc form north to south 

until the Early Toarcian (Suarez and De la Cruz, 1997; Llambias et al., 2007; 

Oliveros et al., 2018). 

Some previous authors have assumed diachroneity of the syn-to post-rift 

transition, from north to south of the Neuquén Basin (D’Elia et al., 2015), because 

the onset of the early post-rift occurred in the Sinemurian in the north (Lanés et 

al., 2008) and during the Early-Late Toarcian in the south (Pángaro et al., 2009). 

However, at the scale of the Neuquén Basin, the spatial pattern of decaying 

volcanism and extensional faulting did not follow a simple latitudinal pattern, as it 
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lasted until the Late Toarcian in the central and southeastern Neuquén Basin 

because of a thermal anomaly (Suarez and De la Cruz, 1997; Bermudez et al., 

2002; Llambias et al., 2007; Schiuma et al., 2011). This raises the question of 

whether or not, at basin-scale, the syn- to post-rift transition sequence that 

records deposition from the decay of extension (Sinemurian to Early Toarcian) to 

complete thermal relaxation (Aalenian) should be regarded as part of the late syn-

rift sequence, as they are not attributable to the basin-scale end of rifting sensu 

stricto (cf. Soares et al., 2012). 

D’Elia et al. (2015) used some examples of small-scale normal faulting 

(few metres) developed in mudstone and sandstone heterolithic strata at the base 

of the Early Jurassic Cuyo Group (Middle section of their TSUIII, equivalent to 

Unit 3 in Chapter 5 of this study) in the Sañico depocentre located in the 

southernmost part of the Neuquén Basin. Therefore, they place the syn- to post-

rift boundary at the Pliensbachian-Toarcian limit, similarly to this study, consistent 

with the synchronous onset of the early post-rift in the southern Neuquén Basin. 

Furthermore, the syn- to post-rift transition might not rely on the presence of 

mesoscale faults as these features might be due to deformation, related to 

compaction that does not reflect active extension, as shown in this study (cf. 

Chapter 4). Therefore, it is crucial to distinguish the evolution of depositional 

systems at a regional-scale, and the influence and distribution of subtle 

extensional deformation such as fault-induced growth folds versus compaction-

related deformation, as it can have consequences for interpretation of the relative 

timing and diachroneity of the syn- to post-rift transition. 

At regional-scale, the stacking pattern of the syn-rift and post-rift 

depocentres with spatial offset and change of depocentre polarity also departs 

from previous assumptions that thickness of the post-rift Early Jurassic strata 

simply matches the syn-rift Precuyano Cycle thickness patterns to infer active 

extensional faulting until the Aalenian (Vergani et al., 1995). Instead, early post-

rift sagging away from syn-rift depocentres axis is consistent with accommodation 

of extension with lateral offset between the locus of lithospheric thinning and 

upper crustal brittle faulting (cf. Chapter 5). This pattern might reflect extension 

with mechanical decoupling between the crust and upper mantle, and 

consequent asymmetric thermal subsidence with respect to the locus of 

extension that is observed at a larger scale in the basin (Sigismondi et al., 2012). 

The rapid change to high magnitude thermal subsidence from syn-rift mechanical 
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subsidence to thermal subsidence recorded with the rapid deep-marine evolution 

of early post-rift depocentres, should reflect enhanced back-arc subdidence of 

the Neuquén Basin shortly after the onset of subduction. This evolution is different 

from other “cool” failed rifts (East African Rift, North Sea Rift, Suez Rift) and is 

characteristic of the post-rift evolution of many extensional back-arc basins 

involving more complex subsidence-related processes (Doglioni, 1995; Morley 

and Westaway, 2006; Baur et al., 2014) than in conventional stretching models. 
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7.3 What were the timing and source for early post-rift sand supply, and 

their implications for palaeogeographic evolution of the Southern Neuquén 

Basin margin? 

 

7.3.1 Revised timing of sand supply in the Early Jurassic Los Molles 

Formation 

 

The new age constraints from this study show that the onset of 

extrabasinal sand supply cannot be attributed to the effects of structural inversion, 

as commonly assumed for the Los Molles Formation, because it is recorded since 

the Late Pliensbachian in the Chacaico Basin (cf. Chapter 5). There, late syn-rift 

deltaic systems were developed under significant extrabasinal sand supply and 

possibly humid climate (Volkheimer, 2008). Later, during the late Early Toarcian, 

sand-rich, early post-rift deep-water systems were developed in the Catán-Lil and 

Chachil basins (and probably as well in the La Jardinera Basin), most likely under 

highstand sea-level conditions and high thermal subsidence. This contrasts with 

previous assumptions that sand-rich systems started to accumulate from the 

Middle Jurassic, with sediment supply induced by major eustatic falls (Gulisano 

and Gutiérez-Pleimling, 1995; Legarretta and Uliana, 1996; Paim et al., 2008) or 

with localized inversion with transpression induced by subduction dynamics 

(Naipauer et al., 2012; Pujols et al., 2018). In the present study, climate might 

have influenced sediment supply. However, the U-Pb ages obtained have also 

shown that extrabasinal sediment supply started prior to the early Late Toarcian 

evolution of climate towards more humid and warmer conditions (Volkheimer et 

al., 2008). 

Sediment composition and palaeoflow data permit a new source area to 

be considered, along the volcanic arc to the southwest that was bounded by fan-

deltaic systems, volcaniclastic aprons and deltaic system (De la Cruz and Suarez, 

1997) mixing volcanic arc-derived, volcanic syn-rift derived and crystalline 

basement-derived sources. Maximum sediment supply rates (from compacted 

thicknesses) range between 67 m/Myr during deposition of the older intraslope 

fan J1.2 and 110 m/Myr during deposition of the intraslope fan J2.1 (cf. Chapter 

5). These sedimentation rates are in the lower range of rates expected with the 

rapid and short-lived development of sand-rich early post-rift systems, ranging 

between 100 and 250 m/Myr (Yu et al., 2013). These results show that 
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extrabasinal sediment production was independent on any other allogenic 

controlling factor and contrast with sequence stratigraphic prediction that suggest 

sediment trapping across the shelf under transgressive, and to a lesser extent, 

highstand conditions. The development of sand-rich intraslope fans across a 

delta-fed ramp-type system constitutes a departure from depositional sequence 

models that emphasise accumulation of low-density sediment gravity flow 

deposits with delta progradation under highstand conditions (cf. Chapter 5 and 

6). Moreover, the occurrence of sediment supply during both transgressive and 

highstand conditions could reflect changes in the rates of volcanogenic sediment 

production and reworking (Ito et al., 1998; Schneider, 2000; Chiocci and 

Casalbore, 2011). This shows that in post-rift settings associated with active 

magmatic arc development, an interplay of allogenic and autogenic factors 

should be considered as controls on sediment supply rates in rift basins (Takano, 

2002; Alves et al., 2003; Yu et al., 2013; Balázs et al., 2017; Marin et al., 2017). 

 

7.3.2 Insights from the palaeogeographic evolution of the Southern 

Neuquén Basin margin 

 

At the scale of the southern Neuquén Basin margin, the detailed study of 

the types of lobes in deltaic and deep-marine intraslope fan systems of the 

Chacaico and Los Molles Formation has shown the record of two different types 

of systems during the late syn-rift and early post-rift (Fig. 7.2 and 7.3) (cf. Chapter 

5). These two systems are: (i) deposits which belong to a central WSW-ENE 

orientated system presently lying in the subsurface along the Huincul High 

located along the cratonic basin margin, and (ii) deposits which belong to a 

western SW-NE orientated system located in the back-arc side of the magmatic 

arc basin margin. In the western system, the Toarcian intraslope fans developed 

after major marine flooding of a former Late Pliensbachian deltaic system, 

considered as the lateral continuity of the central sand-rich systems recognized 

in the subsurface (Gómez Omil et al., 2002) (Figs 7.2 and 7.4). This deltaic 

system might therefore represent the contribution of sediment supply from the 

central system associated with the Huincul High in the studied depocentres. 

However, the Toarcian development of intraslope fans in the central system with 

NW palaeoflows, and in the western system with NNE-NE palaeoflows, precludes 

a genetic relationship between these two contemporaneous systems (cf. Chapter 
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5). This shows that the studied depocentres record both the late syn-rift 

extrabasinal sediment supply from the central system (Late Plienbachian) and 

the early post-rift extrabasinal sediment supply from the western system (late 

Early Toarcian) due to the spatial variability of source contribution during the syn- 

to post-rift transition (Fig. 7.2 and 7.3). 

Intraslope fans of the studied depocentres belong to a deep-marine sandy 

ramp-type system (Figs 7.3 and 7.4) that developed in the western part of the 

southern basin margin during the Toarcian, prior to shelf-break development 

during the Middle Jurassic (cf. Brinkworth et al., 2018). In the central system, the 

Toarcian intraslope fans developed downdip fan deltas associated with a narrow 

shelf (Gómez Omil et al., 2002). This contrasts with the eastward configuration of 

the southern basin margin, which recorded the development of a SW-NE-

orientated sand-rich deltaic system with WNW palaeoflow, that remained in a 

shallow-marine setting associated with a wider shelf (Brinkworth et al., 2018) 

(Figs 7.2 and 7.4). This system compised relatively small-scale deltaic sandy 

clinoforms (50-300 m thick) and muddy deltaic fringes developed during Early-

Late Toarcian along a low-gradient ramp lacking downdip intraslope fans 

(Brinkworth et al., 2018). It also evolved since the latest Toarcian-Early Aalenian 

into thicker shelf-edge deltaic clinoforms (300-500 m thick) with shelf-break 

nucleation (Brinkworth et al., 2018) (Figs 7.3 and 7.4).  
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Figure 7.2: Late Pliensbachian-Early Toarcian palaeogeographic map of the Southern Neuquén 
Basin margin after Gómez Omil et al. (2002) and Brinkworth et al. (2018). Note the seismic-

scale cross sections indicated correspond to fig. 7.4. 
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Figure 7.3: Early-Late Toarcian palaeogeographic map of the Southern Neuquén Basin margin 
after Gómez Omil et al. (2002) and Brinkworth et al. (2018). Note the seismic-scale cross 

sections indicated correspond to fig. 7.4. 

 



 346  
 

 

Figure 7.4: Comparative sections seismic neuquen southern margin 

 

The presence of intraslope fans in the central system associated with a 

steeper basin margin physiography than for the eastern system shows the role of 

slope gradient and shelf width (cf. Strachan et al., 2013) on the development of 

deep-marine intraslope fans in early post-rift setting (Figs 7.3 and 7.4). This 

suggests that sediment supply of the western intraslope fans from a relatively 

narrow shelf area favoured sediment transfer downslope. The western intraslope 

fans in the studied depocentres could not be physically related with their updip 

feeder system, which was exhumed and eroded with the Andean foreland 

evolution of the basin. However, their development during rapid early post-rift 

subsidence in the back-arc side adjacent to the Early Andean magmatic arc basin 

margin and under highstand sea-level conditions, contrasts with the prevalence 

of deltaic sedimentation in the eastern system due to limited subsidence and a 

wider shelf along the cratonic basin margin (Figs 7.2 and 7.3). This shows the 
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control of differential subsidence in the back-arc setting, decreasing eastwards 

away from the magmatic arc. 

 

Intraslope fans recorded (i) the evolution of the system with influence of 

topography on sediment partitioning recorded in their stratigraphic architecture 

and facies distribution within basins but also across several basins, and (ii) the 

general progradation of the system through time with coarsening of sediment 

grain size from J1.2 to J2.1 intraslope fans (cf. Chapter 5). Slope steepening 

through time is recorded by the evolution of this low- to higher-gradient ramp-type 

system and might reflect increased subsidence in the vicinity of the volcanic 

island arc, with uplift and growth (widening) of the magmatic arc relief with active 

volcanism. Therefore, the main intrabasinal factors that controlled the Toarcian 

evolution of western early post-rift intraslope fans of the southern basin margin 

were healing of topography and increasing slope angle driven by the increase of 

basin subsidence and magmatic arc basin margin uplift and/or the build-up of 

depositional shelf-edge relief. This evolution contrasts with some other rift basin 

margins, which evolve with the development of narrow combined structural-

sedimentary shelves (<2-15 km wide) with a well-defined shelf-slope break 

nucleated and/or amplified by a pre-existing structural relief bounded by relatively 

steep slopes (Bell et al., 2008; Strachan et al., 2013) (Figs 7.1 amd 7.3). In such 

high shelf- to basin-relief configurations, enhanced by sustained syn-rift basin 

subsidence and starvation, efficient sediment bypass across steep out-of-grade 

slopes is the dominant process and promotes the rapid development of detached 

basin-floor fans or base-of-slope aprons in sediment-underfilled basins (Helland-

Hansen et al., 2012; Strachan et al., 2013; Dodd et al., 2019) (Fig. 7.1).  

The development of rift basins with high shelf- to basin-relief is inherent to 

their syn-rift flooding and establishment of deep-marine conditions with 

mechanical subsidence. In contrast, in the Neuquén Basin deep-marine 

conditions established with rapid thermal subsidence behind an active magmatic 

arc with a generalized early post-rift maximum marine flooding, resulting in the 

development of a deep-marine basin bounded by lower gradient shelf-to-basin-

relief. This promoted, starvation of the true basin-floor of the Neuquén Basin at 

that time (Fig. 7.3) and sand storage across the slope, in contrast with rift basins 

having a higher gradient shelf- to-basin-relief. This is supported by the new U-Pb 

ages presente din this study, showing that the Toarcian intraslope lobes of the 
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western system developed prior to establishment of the Middle Jurassic shelf-

slope-basin-floor system(Fig. 7.4). Therefore care should be taken when applying 

basin-floor fan models to interpret Early Jurassic sand-rich systems along the 

southern basin margin (cf. Chapter 5). 

 

7.3.3 Implications of sandstone source type for hydrocarbon reservoirs 

distribution along the Southern Neuquén Basin margin 

 

The findings of this study have several implications for subsurface 

reservoirs, traps, and source rock prediction. Correct identification of the syn- to 

post-rift boundary is key for the assessment of late syn-rift versus early post-rift 

isopach thickness maps and associated types of traps. The defined “base” of the 

Los Molles Formation in many subsurface is Late Pliensbachian in age and 

therefore should instead be identified as the Chacaico Fm. (cf. Chapter 5). 

Following this view it can be either late syn-rift or early post-rift, which has 

implications in subsurface for both the prediction of the thickness and distribution 

of source rocks and the type of combined stratigraphic-structural or stratigraphic 

traps and reservoir quality of sandbodies within the Los Molles Formation. 

This study permits to better define what should correspond to the base of 

the Los Molles Formation (Unit 3) (cf. Chapter 5), which should be constrained 

as a stratigraphic marker of regional extent that have been recognized at outcrop 

and records major marine flooding. This event marked a change in sedimentation 

across the study area and at regional-scale, which is associated with thermal 

subsidence effects and onset of the early post-rift. From a source rock 

perspective, the sedimentary variability recognized at the base of the “Los Molles 

Formation” (when not differentiated between the Chacaico or Chachil Fm. 

deposits) has implications for the identification of the mudstone with “higher 

source rock potential” tracked in subsurface studies (Gómez Omil et al., 2002; 

Pángaro et al., 2006). Indeed, it could correspond to a range of “mudstone” 

deposits at outcrop including siliciclastic offshore (Catán-Lil Basin), delta-front 

and prodelta (Chacaico Basin), or siliciclastic-starved basinal deposits associated 

with maximum marine flooding (Chachil Basin) deposits, which can be late syn-

rift or early post-rift (cf. Chapter 5).  

From a reservoir perspective this requires to consider (i) late syn-rift 

combined traps as subsidence is associated with onlap and thickening of delta-
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front sandstone and prodelta mudstone (Chacaico Basin; Chapter 5) towards the 

basin border fault, and (ii) early post-rift stratigraphic traps related to effects of 

inherited and compaction-enhanced rift topography on the stratigraphic 

architecture and characteristics of intraslope fans (Chachil and Catán-Lil Basin; 

Chapter 4 and 5). Petrographic work (cf. Chapter 6), although focused on 

provenance, has shown that significant differences exist between intraslope fan 

and delta-front sandstone characteristics from architecture, to bed-scale and 

reservoir-scale, depending on source provenance (Figs 7.2 and 7.3). These 

characteristics show the importance of constraining the source, depositional 

environment and inherited topography at time of deposition of “sandbodies” in the 

Los Molles Formation along the southern basin margin. For instance, moderately 

sorted delta-front deposits (J1.1 sequence) with extrabasinal cratonic basin 

margin source record better reservoir quality than overall poorly to very poorly 

sorted intraslope fans, which can be matrix-poor (J1.2 sequence) or matrix-rich 

(J2.1 sequence) (cf. Chapter 6).  

In the deltaic system which presents the best potential reservoir quality, 

stratigraphic traps could be associated with pinchout of sandbodies within 

prodeltaic deposits. However, the poor spatial connectivity and amalgamation 

rate in the delta-front sandstone might form targets of limited volume. Traps in 

the intraslope fan system would be associated with low-aspect ratio 

amalgamated lobe complex terminations/margins. They can form volumetrically 

larger amalgamated sand-rich packages thinning with onlap or abrupt pinchout 

across just a few kilometres, forming stratigraphic and/or combined trap with 

variable reservoir quality and risk for hydrocarbon leakage at their downdip and 

lateral terminations (cf. Chapter 4 and 5).  

Considering spatial relationships between the western magmatic arc 

margin-fed and central cratonic margin-fed intraslope fan systems, shows the risk 

for stacking of northeastward prograding western intraslope fans, with 

northwestwards prograding intraslope fans (Figs 7.2 and 7.3). It might be difficult 

to distinguish the different types of intraslope fans and their respective 

provenance determines differences in reservoir quality. In the studied 

depocentres, if the Late Pliensbachian deltaic system (J1.1 sequence) did not 

switch laterally, therefore starving the slope in the Chacaico Basin, both central 

and western intraslope fan systems would have developed contemporaneously 

during the Toarcian, and this scenario is likely to have occurred later with 
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progradation of both systems. In the subsurface, the risk for interfingering and 

stacking of axial sandy systems sourced from the magmatic arc basin margin and 

transverse sandy systems sourced from the cratonic basin margin along the 

southern Neuquén Basin has significant implications for the prediction of 

reservoir quality. 

The differences between intraslope fans characteristics inherent to their 

depositional configuration and degree of confinement/interaction with topography 

also needs to be considered. The main controls on the net: gross and reservoir 

quality of investigated intraslope fans in the Early Jurassic Los Molles Fm. are 

the degree of inherited topography on which depends of confinement at basin 

margins, and interaction with seabed relief. For instance sandstone beds in the 

J1.2 intraslope fan sequence have a lower matrix content and dominant 

gradational bed tops compared with coarser-grained sandstone with dominant 

sharp tops of the J2.1 intraslope fan sequence. The latter deposits present a 

higher risk for development due to bed-scale heterogeneity related to the 

stratigraphic distribution of (i) thin hybrid event beds near lobe complex margins, 

and (ii) hybrid event beds with thick debrites (several metres thick) forming flow 

baffles in stacked lobe axis and fringe deposits (cf. Chapter 4). Furthermore, 

within the J2.1 intraslope fan, some proximal to distal differences also apply. For 

instance, thin- to medium-bedded sandstone located updip in the proximal 

Eastern Catán-Lil Basin, which might record sediment bypass (Stevenson et al., 

2015), tend to be coarser-grained and with lower matrix content than the thicker-

bedded sandstone located downdip in the Chachil Basin. Therefore, the effects 

of topography on stratigraphic architecture need to be taken into account due to 

the implications for sediment bypass and/or developing and trapping hybrid event 

beds, and termination style of lobe complex margins near intrabasinal relief. Here, 

two intraslope fans, despite having similar composition and provenance, lobe 

dimensions and geometry, can show markedly different facies distributions 

across lobes and bed-scale heterogeneity development. Furthermore, the 

thickness patterns of lobes and sandstone grain-size (coarser versus finer) does 

not fit with reservoir quality (e.g. coarser-grained beds are not always the thickest 

beds, thick beds can have more matrix than thinner beds, the coarser-grained 

sandstone lobes of the J2.1 sequence have the highest matrix content and 

include more hybrid event bed deposits compared with finer-grained sandstone 

lobes of the J1.2 sequence) (cf. Chapter 6).  
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7.4 What are the characteristics of early post-rift intraslope fan deposits of 

the Early Jurassic Los Molles Formation and how do they compare to other 

deep-marine sandy systems? 

 

7.4.1 Facies characteristics of lobes in the Early Jurassic Los Molles 

Formation 

 

The outcomes of the present study provide rare insights into the subseismic 

characteristics of early post-rift intraslope lobes formed in perched or healed 

slope accommodation that are not captured by current deep-marine rift basin 

models. Sediment gravity flows respond to inherited seabed topography, which 

can induce partial flow confinement, sediment bypass or storage, and changes in 

sediment gravity flow behaviour including flow deflection and reflection. General 

characteristics of lobes in intraslope fans of the Early Jurassic Los Molles Fm. 

include poor to very poor sorting with variable fine to very coarse grain-size, plant 

material and mud matrix content (average 18% for sandstone of the J1.2 

intraslope fan and 27% for sandstone of the J2.1 intraslope fan) (cf. Chapter 6). 

The coarser grain-size range, poor sorting and variable matrix content of these 

sand-rich deposits permit comparison with other intraslope fans and base-of-

slope and basin-floor fans developed with the influence of seabed topography.  

Sandstones can record the presence or not of outsized granule fraction, 

grain-size breaks, high sediment fallout rate features (sinusoidal laminations, 

climbing ripples, soft sediment deformation), exotic combined flow bedforms 

related to flow reflection or deflection (convex-down ripples with tangential 

foresets, isotropic and anisotropic HCS-like bedforms), and clayey banding and 

low amplitude dune-scale bedforms (cf. Chapter 5 and 6) (Fig. 7.5). Overall, the 

mud matrix content and poor to very poor sorting of sandstone suggest variable 

but high efficiency flows, able to transport a relatively coarse-grained sediment 

fraction, but with a limited flow capacity for sediment sorting, probably due to the 

limited flow run-out distance. The occurrence of clast-rich and matrix-rich facies, 

including hybrid event beds with thick debrite divisions, points to deposition by a 

range of turbulent to turbulence-supressed clay-rich transitional flows, quasi-

laminar plug flows and sandy debris-flows with variable strength (Baas et al., 

2009, 2011; Talling et al., 2012) (cf. Chapter 4 and 6). The limited segregation of 

these cohesive deposits and bed-scale heterogeneity compared with less or non-
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cohesive sandy deposits might be related with the development of lobes across 

a moderate slope gradient, with seabed relief that was not favourable for flow 

ignition and enhanced flow deceleration (Fig. 7.5). This resulted in deposition 

across the slope with no sediment bypass towards the basin-floor (cf. Chapter 5) 

(Fig. 7.3). The early post-rift lobe complexes can show poorly organized to 

random bed thickness and grain-size trends in finer-grained lobe complexes in 

the distal part of the system (distal part of J1.2). In contrast, thinning- and fining-

upwards trends, sometimes with basal coarsening- and thickening-upwards 

trends, characterise coarser-grained lobe complexes in the proximal part of the 

system (J2.1 and proximal part of J1.2). Their differences relate to the high matrix 

(distal part of J1.2 and J2.1) versus low matrix content of sandstones (proximal 

part of J1.2), low sand: mud ratio (distal part of J1.2 and J2.1) versus high sand: 

mud ratio of lobe complexes (proximal part of J1.2), paucity (J1.2) versus 

abundance of hybrid event beds and scouring (J2.1) and abundant (J1.2) or 

moderate (J2.1) development of combined flow bedforms (cf. Chapter 6). 
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Figure 7.5: Bloc diagrams showing the evolution of lobe complexes with healing of inherited rift 
topography by J1.2 to J2.1 intraslope fans, and summarizing their main characteristics. 
Termination pinchout styles shown in fig. 7.6 are indicated.  
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Figure 7.6: Schematic cross sections of termination pinchout styles indicated in fig. 7.5. Abrupt 
pinchout of matrix-rich sandstone associated with post-depositional remobilization and injection 
is recorded from depocentre (A) to lateral and frontal margins (B) of J1.2 distal ramp lobe 
complexes. J1.2 proximal ramp lobe complexes show lateral convergent onlap near depocentre 
horst border (C) and frontal pinchout with transition from matrix-poor to matrix-rich sandstone and 
increase in bed-scale heterogeneity (D). J2.1 proximal ramp lobe complexes record lateral 
pinchout with erosion, scouring and HEB development (E) and frontal termination with abrupt 

pinchout of thick HEBs offset by thin-bedded matrix-rich sandstone. Vertical scale is 5 metres. 

 

The terminations of intraslope lobe complexes offset basin margins, and 

show spatial thickness changes (Fig. 7.6). Changes can be associated with i) 

abrupt sandstone pinchout without significant fining associated with 

remobilization and injection (sills and dykes) near frontal and lateral lobe complex 

margins, with high confinement by intrabasinal relief and basin margins (distal 

ramp lobe complexes in J1.2) (Fig. 7.6-AB), or ii) with convergent onlaps with 
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sandstone fining and thinning with bedform (HCS-like, climbing ripples, soft 

sediment deformation) development near lateral lobe complex margins and 

enrichment in matrix-scale heterogeneity near frontal lobe complex margins, with 

moderate confinement by basin margins  (proximal ramp lobe complexes in J1.2) 

(Fig. 7.6-CD), or iii) with erosive pinchout with relatively coarse-grained 

sandstone thinning but not fining, with scouring and hybrid event bed (HEB) 

development near lateral margins and frontal lobe complex margins, with partial 

confinement by intrabasinal relief and basin margins (proximal ramp lobe 

complexes J2.1) (Fig. 7.6-EF).  

The abrupt pinchout is associated with reduced potential reservoir quality 

due to presence of matrix-scale heterogeneity, enrichment in mudstone clasts 

and cementation associated with clastic injectites near lateral and frontal lobe 

complex margins (distal ramp lobe complexes in J1.2) (cf. Chapter 5 and 6) (Figs 

7.5 and 7.6-AB). Injectites pinchouts have been recognized in oblique updip 

pinchout of basin-floor lobes as increasing the risk for hydrocarbon leakage 

(Cobain et al., 2017). In contrast, the structured and gradual fining towards 

convergent onlap implies better potential reservoir quality near lateral lobe 

complex margins (Figs 7.5 and 7.6-CD). The lack of, or poorly developed matrix-

scale heterogeneity restricted to frontal lobe complex margins and the lack of 

bed-scale heterogeneity (HEBs are confined to the stratigraphic base of lobe 

complexes) implies a higher potential porosity and permeability with reduced risk 

for leakage in the convergent onlap configuration (proximal ramp lobe complexes 

in J1.2) (cf. Chapter 5 and 6).  

The erosive pinchout with thinning (but not fining) and HEB development 

implies a lower potential reservoir quality near lateral lobe complex margins due 

to the widespread development of bed-scale heterogeneity (Figs 7.5 and 7.6-EF). 

Improvement of potential reservoir quality near frontal lobe complex margins is 

related to the offset of abrupt pinchout of thick HEB by the gradual pinchout of 

thin-bedded sandstone with matrix-scale heterogeneity. The widespread 

presence of HEBs implies high matrix content in sandstone reducing porosity and 

permeability, reducing risk for leakage along lateral lobe complex margins, but 

with increased risk towards frontal margins. In addition, the risk for leakage is 

also increased by the development of large-scale injectite complex (sill-

dominated) near the stratigraphic base of lobe complex (cf. Chapter 4). Both 

terminations are indicative of local high confinement by basin margins and frontal 
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intrabasinal relief and their difference should be related to the orientation of the 

confining topography (cf. Chapter 4) (Fig. 7.5). The lack of fining trends that can 

be observed towards lobe complex margins (in J2.1) is a feature recognized in 

intraslope lobes associated with bypass of finer grained flow components across 

relief (Spychala et al., 2015; Jobe et al., 2017). This is consistent with the 

distribution of small scours and channel forms in the coarser-grained lobes (J2.1 

and to a less extent in the proximal part of J1.2), which might have served as 

ephemeral conduits for bypass of the most energetic flows downdip and can be 

found in intraslope lobes (Hay, 2012; Spychala et al., 2015) (Fig. 7.7). The lack 

of fining trends towards lobe complex margins and the coarser grain-size of 

matrix-rich sandstone (J2.1) could also result from the clay-rich character of 

sediment gravity flows that can promote the transport of coarser-grained particles 

and increase flow run-out distance (Gladstone et al., 1998; Gardner et al., 2003; 

Al Ja'Aidi et al., 2004). 

 

7.4.2 Comparison of intraslope lobe complex dimensions, stacking patterns 

and termination style of the Early Jurassic Los Molles Formation with other 

basin-floor and intraslope systems 

 

The dimensions of individual early post-rift lobe complexes (~25-32 m thick 

in J1.2 min 5-15 km long, min 5-6 km wide and 50-70 m thick in J2.1, min 6-8 km 

long, min 5-6 km wide) are comparable to basin-floor lobe complexes of the Karoo 

Basin (10-50 m thick; Prélat and Hodgson 2013; Spychala et al., 2017), which 

are of greater areal extent (40 km long, 30 km wide) (Prélat et al., 2009) (Fig. 

7.7). Their thickness is also sensible to other lobe complexes of large intraslope 

fans developped in a similar ramp-type stepped slope setting with subtle change 

of slope gradient but which are of greater areal extent (40 m thick, 100 km long, 

40 km wide) (Mignard et al., 2019) (Fig, 7.7). They are much thinner, but of similar 

extent to ponded turbidite systems of the Gulf of Mexico (70-100 m thick, 10-16 

m long, 6-12 m wide) (Covault et al., 2009) or across the western Nigeria delta 

slope (70-120 m thick, 8 km long, 8 km wide) (Jobe et al., 2017) (Figs 7.7 and 

7.8). Their dimensions are similar to other well constrained intraslope lobe 

complexes found in the Karoo Basin (10-15 m thick, 15-25 km long, 6-10 km wide) 

(Spychala et al., 2015) but they remain thicker (Fig. 7.8). Their thickness and 

dimensions are more similar to other early post-rift intraslope lobe complexes 
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including examples of the Maloy Slope of the northern North Sea (Jackson et al., 

2008) and base-of-slope systems of the North Falkland basin (Dodd et al., 2019) 

and East Greenland (Henstra et al., 2016) (Fig. 7.7). 

Lobes have a tabular to mounded lobe geometry and low-aspect ratio, 

slightly larger in the J1.2 intraslope fan (~2.5-3.5 m thick, 5-8 km long, ~2-5 km 

wide) than in the J2.1 intraslope fan (1.5-5 m thick, 4-6 km long, ~1-4 km wide). 

The thickness range of intraslope lobes are much smaller than basin-floor lobes 

of the Karoo Basin (3-14 m thick, 21-31 km long, 8-18 km wide), or similar 

unconfined mud-rich basin-floor systems, which form elongate and relatively thin 

lobes (Prélat et al., 2010) (Fig. 7.7) . In contrast, the studied early post-rift lobes 

have similar spatial extent range as highly confined lobes of the Golo Fan system 

but are much thinner (14-38 m thick, 5-14 km long, 3-8 km wide), than the Kutai 

Fan system (22-47 m thick, 3-12 km long, 1-7 km wide) (Prélat et al., 2010) (Fig. 

7.8). Again, the dimensions of individual lobes across the western Nigeria delta 

slope are the better analogue to the lobes of the Los Molles Formation (<2 m 

thick, 8 km long, 5 km wide) (Jobe et al., 2017) and therefore they might record 

deposition by smaller volume flows in larger depocentres, with partial 

confinement (Fig. 7.8). 

This is consistent with progradational to aggradational stacking of the lobe 

complexes with compensational stacking indicative of lobe size being small 

relative to basin area at the time of deposition. Nonethless, it is also consistent 

with some flow confinement at basin margins given termination styles ranging 

from subtle onlap to abrupt pinchout, and the range of exotic combined flow 

bedforms, hybrid event bed distribution and diverse palaeocurrents recording 

variable effects of flow interactions with topography. Aggradational to 

progradational stacking patterns are common in intraslope lobes influenced by 

the containment of slope morphology (Covault and Romans, 2009; Spychala et 

al., 2015; Marini et al., 2015) and contrast with compensational stacking that is 

more common in basin-floor lobes developed in unconfined setting (Prélat et al., 

2009). Compensational patterns can also arise due to the subtle influence of lobe 

depositional relief in basin-floor lobes (Klaucke et al., 2004; Gervais et al., 2006) 

or in base-of-slope apron lobes (Dodd et al., 2019). 
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Figure 7.7: Synthetic bloc diagram showing a range of intraslope, slope apron and basin-floor 
lobe complexes to compare dimensions, depositional setting and grain-sizes, with characteristics 
of the ramp-type lobe complexes of the Los Molles Formation. 
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Figure 7.8: Diagram comparing the dimensions of a range of intraslope lobe complexes with lobe 
complexes of the Los Molles Formation.  
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7.4.3 Controls on confinement and development of bed-scale heterogeneity 

in intraslope lobe complexes of the Early Jurassic Los Molles Formation 

 

The differences in J1.2 versus J2.1 lobe complex dimensions fans of the 

Los Molles Fm. (~25-32 m thick in J1.2 min 5-15 km long, min 5-6 km wide and 

50-70 m thick in J2.1, min 6-8 km long, min 5-6 km wide) and high or low net: 

gross successions are consistent with deposition in contrasted topographic 

configurations (Fig. 7.5). Intraslope fans of the Los Molles Fm. do not show 

evidence for full confinement, with a strict fill-and-spill stratigraphic architecture 

including thick wedge-shaped successions of ponded sheet sandbodies 

downlapped by bypass channels and mass-transport deposits, typical of three-

dimensional ponding (Prather et al., 1998; Beaubouef and Friedmann, 2000; 

Sinclair and Tomasso, 2002; Booth et al., 2003) (Fig. 7.7). The pinchout and 

onlap pattern of intraslope fans of the Los Molles Fm. indicate rather moderate to 

subtle confinement towards basin margins, with a stratigraphic architecture 

indicative of fine-grained dilute flow stripping in the downdip outboard basins, and 

intraslope fan progradation as accommodation is healed and relief is levelled (Fig. 

7.6). These features are more characteristic of partial confinement with a low ratio 

of flow size to receiving basin size in perched or healed slope settings with limited 

slope accommodation (Prather et al., 2003; Smith, 2004). However, the 

accumulation pattern of high net: gross lobe successions lacking bed-scale 

heterogeneity, expected in these settings is not observed here as intraslope lobe 

complexes form low to high net: gross successions due to the variable 

development of matrix- to bed-scale heterogeneity and effects of topographic 

confinement. 

Intraslope fan successions of the Los Molles Fm. show well-developed 

matrix-scale heterogeneity throughout lobe complexes with dirty pinchout 

margins with injectites (distal ramp lobe complexes of J1.2 sequence), bed-scale 

heterogeneity segregated a the stratigraphic base of lobe complexes with cleaner 

onlap margins (distal ramp lobe complexes of J1.2 sequence), or matrix- and 

bed-scale heterogeneity widespread throughout lobe complexes, including 

towards dirty pinchout margins (lobe complexes of J2.1 sequence) (Figs 7.5 and 

7.6). Bed-scale heterogeneity is recorded by deposition of a range of thin to 

medium HEB types showing segregation towards the frontal fringe of lobe 

complex in the J1.2 intraslope fan (Fig. 7.6-CD). In contrast, thin to very thick 
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HEBs occur at lobe fringes and lobe axis, showing inefficient segregation in the 

J2.1 intraslope fan (Fig. 7.6-EF). This departs from the common recognition of 

bed-scale heterogeneity segregated radially towards lobe fringes in basin-floor 

lobes, which is used as an indicator of better-quality reservoir sandstone 

developed upstream in the system (Haughton et al., 2009; Kane and Pontén, 

2012; Kane et al., 2017; Spychala et al., 2017).  

As intraslope lobe complex terminations are not specifically associated with 

systematic development of bed-scale heterogeneity restricted to basin bounding 

slopes (Pyles and Jennette, 2009; Patacci et al., 2014; Southern et al., 2015), 

confinement was not the main control for bed-scale heterogeneity development. 

Flow confinement by lateral basin margins with deflection and reflection, and 

initiation of internal waves (Patacci et al., 2015; Tinterri et al., 2016, Ge et al., 

2017) led to the development of combined flow bedforms near lateral lobe 

complex margins of the J1.2 and J2.1 intraslope fans. The distribution pattern of 

matrix- to bed-scale heterogeneity in intraslope lobe complexes of the Los Molles 

Fm. is consistent with the sensitivity of clay-rich transitional flows and debris-flows 

to local intrabasinal relief . This might have promoted preferential trapping of more 

cohesive deposits, including hybrid event beds, close to the site of flow 

perturbation by seabed relief (Gee et al., 2002; Modica and Brush, 2004). The 

erratic HEB distribution throughout the J2.1 lobe complex in the Chachil Basin is 

consistent with progradation of the system with sediment bypass and erosion 

across seabed relief inherited from the horst border of the Chachil Basin (cf. 

Chapter 5) (Fig. 7.5). In contrast, the discrete organized HEB distribution locally 

present at the stratigraphic base of the J1.2 intraslope lobe complexes in the 

Eastern Catán-Lil Basin supports deposition across subdued intrabasinal relief 

with little flow perturbation (Fig. 7.5).  
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Chapter 8 Conclusions 

 

This study documents the sedimentology and tectono-stratigraphic 

architecture of the syn- to post-rift transition and to characterize the different types 

of early post-rift lobes in the Los Molles Formation in several exhumed Early 

Jurassic marine rift basin-fills of the southwestern Neuquén Basin in Argentina. 

The main outcomes permitted marine rift models to be extended to back-arc 

settings and highlighted the effects of physiographic evolution of rift basin 

topography. Its role is largely underemphasised in tectono-stratigraphic rift basin 

models, despite being crucial for the exploration of deep-marine post-rift plays 

and reservoir quality. 

 

Sedimentological characteristics and timing of deposition of the Chachil, 

Chacaico and Los Molles Fm. have been refined, and the spatial distribution and 

timing of subtle extension versus compaction-related features have been clarified 

in order to define the syn- to post-rift transition across basins. The syn- to post-

rift transition was marked by a major reorganization of depositional systems 

across inherited rift topography associated with a change in shelf-slope 

physiography and source. This implied a transition from late syn-rift mixed 

intrabasinal (intrarift derived) and extrabasinal (cratonic derived) transverse 

systems with short sediment routeing (alluvial to lacustrine, fan-deltaic, deltaic 

and mixed siliciclastic-carbonate), to early post-rift exclusively extrabasinal 

(magmatic arc derived) axial turbidite systems with longer sediment routeing. 

New age constraints from this study show that extrabasinal sediment supply 

permitted (i) the development of a deltaic system since the Late Pliensbachian in 

the Chacaico Basin during the late syn-rift and (ii) the first deep-marine intraslope 

fans, which started to deposit since the late Early Toarcian in the study area 

during the early post-rift. Therefore, based on the timing of development and 

provenance data, this work precludes a genetic relationship between the deltaic 

system that developed since the late syn-rift along the southeastern cratonic 

basin margin, and intraslope fans that accumulated since the early post-rift in the 

back-arc side of the southwestern magmatic arc basin margin. This contradicts 

previous models in which the first sandy lobes of the Los Molles Formation 

attributed to the Late Toarcian, were interpreted to record extrabasinal sand 

supply from the southeastern basin margin with (i) major eustatic sea-level fall 
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and/or (ii) response to structural inversion with transpression induced by a 

change in subduction dynamics. 

 

In terms of sediment source, the study of the Early Jurassic stratigraphy 

across the investigated depocentres has shown that the syn- to post-rift transition 

can be marked by a change from intrabasinal to extrabasinal sediment supply 

(e.g., in Chachil and Catán-Lil basins). In contrast, in adjacent basins where 

extrabasinal sediment supply starts earlier during the late syn-rift (Chacaico 

Basin), the early post-rift instead record starvation associated with cut-off of 

extrabasinal sediment supply due to migration of systems along basin margin and 

increase of back-arc subsidence near the magmatic arc. In both cases, the local 

intrabasinal and extrabasinal sources that fed late syn-rift systems were 

deactivated due to mud-draping associated with major marine flooding and onset 

of the early post-rift. This maximum flooding event is marked by the deposition of 

an organic-rich mudstone succession that marks the base of the Los Molles Fm. 

and is diachronous at the scale of the Neuquén Basin.  

During the early post-rift, renewed extrabasinal sediment supply in the study 

area is interpreted as a distal signal of arc-related volcanogenic sediment 

production with reworking and supply from deltaic systems developed along the 

narrow shelf flanking the Early Andean volcanic island arc. Indeed, stratigraphic, 

petrographic and palaeocurrent constraints suggest that in the study area the 

provenance of sandstone lobes in the Los Molles Fm. is more consistent with 

extrabasinal supply from magmatic arc basin margin. Petrographic work, 

although focused on provenance, also permitted better potential reservoir quality 

to be identified for late syn-rift deltaic sandstone sourced from the southeastern 

cratonic basin margin than for early post-rift intraslope fan sandstone sourced 

from the southwestern magmatic arc basin margin. This study demonstrates the 

contribution of different extrabasinal sources (cratonic versus magmatic arc 

origin) and implications for the different spatial distribution of late syn-rift and early 

post-rift sandy depocentres, as reservoir quality depends on the type of source. 

In the subsurface, distinguishing the types of lobes and their respective 

provenance might be difficult. Therefore the risk for interfingering and stacking of 

axial sandy systems sourced from the magmatic arc basin margin and transverse 

sandy systems sourced from the cratonic basin margin, could have implications 

for the prediction of reservoir quality along the southern Neuquén Basin margin. 
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In terms of rift basin models, the syn- to post-rift basin-fill signatures and 

predictive spatial distribution of sandy early post-rift accumulations across rift 

topography differ markedly from intracratonic rift basins, and record relatively low 

sedimentation rates (60-110 m/Myr) compared with other examples of early post-

rift sandy systems (~150 m/Myr). Such particularities are inherent to the long-

lived influence of volcanic rifting and inherited topography on the sedimentation, 

important early post-rift back-arc subsidence rates and multiple active 

extrabasinal sediment sources. One of the most striking effects is the long-lived 

influence of pre-rift inherited structures on the distribution, geometry and 

evolution of late syn-rift and early post-rift depocentres with contrasting basin-fill 

patterns. This resulted in the migration of the locus of syn-rift, late syn-rift and 

early post-rift depocentres showing a compensational thickness pattern (i.e. the 

thickest early post-rift depocentres stack above the thinnest syn-rift depocentres) 

and individual change of depocentres polarity (i.e. spatial shift of the late syn-rift 

versus early post-rift depocentre axis). Therefore, early post-rift intraslope fans 

were mainly distributed offset from syn-rift depocentres in basins that formed 

across basement accommodation zones during the syn-rift, and which 

accumulated little or lacking volcanic syn-rift deposits.  

 

Outcomes of the present study provide rare insights into the subseismic 

characteristics of early post-rift intraslope lobes formed in perched or healed 

slope accommodation that are not captured by current marine rift basin models. 

At a regional-scale, early post-rift intraslope fans developed as axial systems, 

from proximal to distal basins, with initial trapping of sand in depocentres proximal 

from the source. Progressive healing of intrabasinal relief and levelling of 

interbasinal relief that acted as long-lived palaeogeographic barriers enabled 

overspill, bypass and progradation of intraslope fans into more distal sand-

starved depocentres, while some adjacent depocentres remained sand-starved. 

This shows that inherited topography locally enhanced by compaction-related 

deformation (small-scale faulting, large-scale folding) played a key role by 

forming long-lived inherited seabed relief that largely influenced the timing for 

spatial linkage of early post-rift sandy depocentres. This implies that early post-

rift intraslope fans of the Los Molles Formation t developd diachronously across 

depocentres, and deposited across underfilled or healed slope topography with 
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different characteristics. Intraslope fans developed across a low- to moderate-

gradient ramp-type system flanking the magmatic arc basin margin, whereas the 

true basin-floor of the Neuquén Basin remains sand-starved during the Early 

Jurassic. The overall stratigraphic evolution and individual facies characteristics 

of Early Jurassic intraslope fans of the Los Molles Fm. reflect the maturation of 

sediment routeing pathways and slope steepening due to magmatic arc uplift and 

increasing adjacent back-arc subsidence. 

 

At the scale of individual depocentre, this study demonstrates the role of 

inherited rift and compaction-enhanced topography on the stacking patterns and 

types of early post-rift lobe complexes comprised in intraslope fans. Depending 

on the difference of available inherited topography and accommodation in 

adjacent depocentres, coeval intraslope lobe complexes developed with variable 

degree of confinement and interactions of sediment gravity flow behaviour with 

seabed relief. The implications of these parameters on the variability of lobe 

complex characteristics (dimensions, termination style, stacking patterns, facies, 

exotic combined flow bedforms and bed-scale heterogeneity) have been 

highlighted. Three main termination styles of intraslope lobe complexes have 

been identified: (i) abrupt pinchout of matrix-rich sandstone without significant 

fining and associated with remobilization and injection at lateral and frontal lobe 

complex margin, (ii) convergent onlap of matrix-poor sandstone with fining and 

thinning, with exotic combined flow bedform development at lateral lobe complex 

margin and with development of matrix-scale heterogeneity at frontal lobe 

complex margin, or (iii) erosive pinchout of matrix-rich relatively coarse-grained 

sandstone with thinning but not fining, with a certain degree of scouring 

associated with widespread hybrid event bed and exotic combined flow bedform 

development near lateral lobe complex margin and with abrupt pinchout of thick 

hybrid event beds offset by gradual pinchout of HEB-rich thin-bedded sandstone 

near frontal lobe complex margin. Lobe complex characteristics and termination 

styles have implications for the prediction of stratigraphic traps, hydrocarbon 

leakage and reservoir quality that are difficult to assess in subsurface. Analogues 

for the Early Jurassic part of the Los Molles Fm. should consider early post-rift 

intraslope fans with variable degree of confinement induced by inherited 

topography, complex spatial distribution and multiple extrabasinal sources, which 

differ from models of currently applied unconfined basin-floor fan models. 



 367  
 
 

Perspectives for future research from a proposed involve the elaboration of 

detailed intraslope lobe characteristics. This involves fine-scale assessment of 

facies and HEB type distribution at lobe-scale (Markov chain analysis), 

petrographic characterization of bed-scale heterogeneity and quantification of 

bed thinning rates with restoration of slope angles towards lobe complex margins 

in order to constrain the variability in the degree of confinement. Finally, 

refinement of the stratigraphic architecture of intraslope fans can be integrated 

with UAV photogrammetric models and borehole drilling to better constrain the 

dimensions and architecture of intraslope fans in subsurface in the study area. 
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Appendix 1: Stereonets of strike-dips measurements for each tectono-sedimentary unit and separated 
by zones (zone numbers refer to the location of sections with same numbers). The “all zones” 

stereonets represent all the measured strike-dip planes for a unit with colours corresponding to zone 
colour.  
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Appendix 2: Stereonets of restored mean structural bedding planes (see Fig. 4) for each tectono-
sedimentary units and in each zones. 
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Appendix 3: Table of palaeocurrent measurements with bedding strike and dip indicated, section number 
in figures and section names. 
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Appendix 4: Table of log coordinates with indicated section number in figures of the thesis and section 
names. 
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Appendix 5: Table of sample coordinates indicating the corresponding logs and their numbers in figures 
of the thesis. 

 

 

 

 

 

 

 

 

Sample 

name

Section 

name 

notebook

Section 

number 

in figures

Depocentre

MAS1 1 39°19'28.45"S  70°33'43.93"W

MAS1 2  39°19'27.93"S  70°33'42.04"W

MAS1 3  39°19'29.27"S  70°33'31.67"W

MAS1 4  39°19'35.78"S  70°33'27.30"W

MAS1 5  39°19'32.96"S  70°33'22.44"W

MAS2 1  39°17'43.57"S   70°33'47.57"W

MAS2 2  39°17'42.12"S  70°33'41.86"W

MAS2 3  39°17'41.07"S  70°33'40.29"W

MAS3 1  39°17'18.37"S  70°34'04.25"W

MAS3 2  39°17'17.47"S  70°34'03.47"W

MAS3 3  39°17'17.75"S  70°34'01.69"W

PS1B-1  39°15'12.15"S  70°34'26.38"W

PS1B-2  39°15'05.15"S  70°34'13.71"W

TUTS2A 1  39°15'30.02"S  70°34'55.53"W

TUTS2A 2  39°15'31.59"S 70°34'53.98"W

CHAS2-1  39°24'00.15"S  70°27'59.72"W

CHAS2-2  39°23'54.06"S  70°27'56.37"W

CHAS3-1  39°22'55.44"S  70°30'03.97"W

CHAS3-2  39°22'48.97"S  70°29'49.95"W

LJS2-1  39°23'58.41"S  70°46'31.13"W

LJS2-2  39°24'00.32"S  70°46'31.09"W

S5 BIS A 1  39°10'59.43"S  70°31'38.40"W ChaS5bisA

S5 BIS B 2  39°10'56.84"S  70°31'30.76"W

S5 BIS B 3  39°10'57.04"S  70°31'30.35"W

S5 BIS B 4  39°10'57.38"S  70°31'28.52"W

S8-1  39°10'24.60"S  70°30'53.14"W

S8-2  39°10'33.48"S  70°30'53.41"W

SI2 1  39°10'31.37"S  70°29'40.98"W

SI2 2  39°10'31.93"S  70°29'40.12"W

Chachil

12bis

8ChaS8

ChaS12

5
ChaS5bisB

East Catan-Lil

Chacaico

La Jardinera

ChaS2

ChaS3

LJS1

5

6

10

9

2

3

MaS1 4

GPS location

MaS2

MaS3

PS1b

TutS2-a
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Appendix 6: Table of point counting showing the main classes of grains, types of grains and their 
representation percentage for J 1.1 samples. 
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Appendix 7: Table of point counting showing the main classes of grains, types of grains and their 
representation percentage for J 1.2 samples. 
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Appendix 8: Table of point counting showing the main classes of grains, types of grains and their 
representation percentage for J2.1 samples. 

 



 424  
 

 

Appendix 9: Log number 1 (Cha-S1) part 1. 
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Appendix 10: Log number 1 (Cha-S1) part 2. 
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Appendix 11: Log number 2 (Cha-S2) part 1. 
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Appendix 12: Log number 2 (Cha-S2) part 2. 
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Appendix 13: Log number 3 (Cha-S3) part 1. 
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Appendix 14: Log 3 (Cha-S3) part 2. 
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Appendix 15: Log number 4 (Ma-S1) part 1. 
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Appendix 16: Log number 4 (Ma-S1) part 2. 
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Appendix 17: Log number 5 (Ma-S2) part 1. 
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Appendix 18: Log number 5 (Ma-S2) part 2. 
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Appendix 19: Log number 6 (Ma-S3). 
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Appendix 20: Log number 7 (EZ-S2) part 1. 
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Appendix 21: Log number 7 (EZ-S2) part 2. 
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Appendix 22: Log number 8 (Tut-S1) part 1. 
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Appendix 23: Log number 8 (Tut-S1) part 2. 
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Appendix 24: Log number 9 (Tut-S2a) part 1. 
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Appendix 25: Log number 9 (Tut-S2a) part 2. 
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Appendix 26: Log number 9 (Tut-S2b). 
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Appendix 27: Log number 10 (PS1-a). 
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Appendix 28: Log number 10 (PS1-b). 
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Appendix 29: Log C (La Jardinera). 
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Appendix 30: Log number 1 (Road46). 
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Appendix 31: Log number 2 (MiradorS1) part 1. 
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Appendix 32:Log number 2 (MiradorS1) part 2. 
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Appendix 33: Log number 3 (MiradorS2). 
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Appendix 34: Log number 4 (Morro del Aguila). 
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Appendix 35: Log number 5 (SonadaS2) part 1. 
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Appendix 36: Log number 5 (ChaS5bisAB) part 2. 
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Appendix 37: Log number 5a (ChaS5bis) and b (ChaS5bis-CD). 
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Appendix 38: Log number 6 (SonadaS1) part 1. 
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Appendix 39: Log number 6 (SonadaS1) part 2. 
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Appendix 40: Log number 7 (Picun Leufu) part 1. 
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Appendix 41: Log number 7 (ChaS7) part 2. 
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Appendix 42: Log number 8 (ChaS8). 
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Appendix 43: Log number 9 (ChaS16). 
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Appendix 44: Log number 10 (El Luchador S1). 
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Appendix 45: Log number 12 (Paine Milla). 



 461  
 

 

Appendix 46: Log number 12bis (ChaS12). 

 

Appendix 47: Log number 13 (CP15) and 14 (CP14). 



 462  
 

 

Appendix 48: Log number 15 (CP13). 
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